覆膜对无人机多光谱遥感反演土壤含盐量精度的影响
发布时间:2024-04-21 02:41
快速、准确地获取农田土壤盐分含量对指导合理灌溉及盐渍土的治理有重要意义。该文以内蒙古河套灌区沙壕渠灌域内的覆膜耕地为研究对象,利用无人机多光谱相机获取研究区内5月和6月的多光谱遥感数据,并同步采集区域内表层土壤含盐量数据,研究覆膜对无人机多光谱遥感图像反演农田土壤盐分含量精度的影响。利用支持向量机(support vector machine,SVM)、反向传播神经网络(back propagation neural network,BPNN)和极限学习机(extreme learning machine,ELM)3种机器学习方法,分别构建去膜前后基于原始光谱反射率和优选光谱指数的土壤含盐量估算模型。结果表明,去膜前后的各模型均可有效估测土壤盐分含量,但基于去膜处理后的数据构建的盐分含量估算模型精度较不去膜处理的有所提升,同时,基于光谱指数构建的盐分含量估算模型精度比基于光谱反射率构建的模型精度高;利用ELM构建的盐分含量估算模型在6月份预测效果最佳,其中基于光谱反射率和光谱指数的建模R2和RMSE分别为0.695、0.663和0.182、0.191,验证R2和RMSE分别为0.717...
【文章页数】:9 页
【部分图文】:
本文编号:3960297
【文章页数】:9 页
【部分图文】:
图1研究区位置图
乌兰布和解放闸永济义长乌拉特0375750150022503000km图1研究区位置图Fig.1Locationmapofstudyarea农业工程学报(http://www.tcsae.org)2019年107°6′0"E107°10′30"E107°8′40"E107°8′5....
图3多光谱图像去膜前后对比图
I-T)Simpleratioindex(SR)Brightnessindex(BI)Normalizeddifferentialsalinityindex(NDSI)计算公式CalculationformulaS1=B/RS2=(B-R)/(B+R)S3=(G×R)/BS4=Β....
本文编号:3960297
本文链接:https://www.wllwen.com/projectlw/zrdllw/3960297.html