当前位置:主页 > 社科论文 > 生态环境论文 >

基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演

发布时间:2017-06-24 12:09

  本文关键词:基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演?,由笔耕文化传播整理发布。


【摘要】:叶绿素a浓度是可直接遥感反演的重要水质参数之一,常用来评价湖泊水体的富营养化程度.太湖是典型的二类水体,光学性质复杂,应用一类水体线性反演模式拟合较为片面且难以找到最佳拟合模型.BP神经网络模型具有模拟复杂非线性问题的功能.为研究高分一号卫星16m多光谱相机WFV4结合BP神经网络进行太湖叶绿素a浓度监测的可行性,实验利用GF-1 WFV4影像和实时的地面采样数据,建立了BP神经网络模型,同时采用波段比值经验模型进行对比.经精度检验,BP神经网络模型预测值与实测值之间的可决系数R2高达0.9680,而波段比值模型的R2为0.9541,且均方根误差RMSE由波段比值模型的18.7915降低为BP神经网络模型的7.6068,平均相对误差e也由波段比值模型的19.16%降低为BP神经网络模型的6.75%.结果证明,GF-1 WFV4影像应用BP神经网络模型反演太湖叶绿素a浓度较波段比值模型精度有所提高.将经过水体掩膜的GF-1 WFV4影像用于训练好的BP神经网络反演太湖叶绿素a浓度分布,结果显示,叶绿素a高浓度区集中分布在湖心区北部、竺山湾、梅梁湾区域,与之前的研究一致.本文研究结果验证了采用BP神经网络模型对GF-1 WFV4影像进行太湖叶绿素a浓度反演的可行性.
【作者单位】: 中国矿业大学(北京)地球科学与测绘工程学院;中国科学院遥感与数字地球研究所;环境保护部卫星环境应用中心;中国国土资源航空物探遥感中心;
【关键词】叶绿素a浓度 BP神经网络 GF- WFV 波段比值模型 太湖
【基金】:国家自然科学基金(No.41101378) 国家高分辨率对地观测重大专项项目(No.11-Y20A32-9001-15/17)~~
【分类号】:X87;X524
【正文快照】: 2.中国科学院遥感与数字地球研究所,北京1001013.环境保护部卫星环境应用中心,北京1000944.中国国土资源航空物探遥感中心,北京1000831引言(Introduction)叶绿素a浓度是衡量湖泊水体初级生产力和富营养化程度的基本指标,因此,对其进行动态监测十分必要.传统的人工实地监测方法

【相似文献】

中国期刊全文数据库 前10条

1 雷明,李作清,陈志祥,吴雅,杨叔子;神经网络在预报控制中的应用[J];机床;1993年11期

2 杨自厚;神经网络技术及其在钢铁工业中的应用第8讲人工神经网络在钢铁工业中的应用(下)[J];冶金自动化;1997年05期

3 李润生,李延辉,胡学军,刘壮,王守俭;神经网络在冶金中的应用[J];钢铁研究;1998年02期

4 刘海玲,刘树深,尹情胜,夏之宁,易忠胜;线性神经网络及在多组分分析中的初步应用[J];计算机与应用化学;2000年Z1期

5 王继宗,王西娟;用神经网络确定梁上裂纹位置的研究[J];煤炭学报;2000年S1期

6 赵学庆,袁景淇,周又玲,贺松;生物发酵过程神经网络状态预报器的验证[J];无锡轻工大学学报;2000年06期

7 李智,姚驻斌,张望兴,贺超武;基于神经网络的混匀配料优化方法[J];钢铁研究;2000年04期

8 胡敏艺,马荣骏;神经网络在冶金工业中的应用[J];湖南有色金属;2000年05期

9 倪建军,邵琳;利用神经网络进行观测数据的分析与处理[J];连云港化工高等专科学校学报;2000年04期

10 裴浩东,苏宏业,褚健;材料工程中基于神经网络的稳态优化策略[J];材料科学与工程;2001年02期

中国重要会议论文全文数据库 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

中国重要报纸全文数据库 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

中国博士学位论文全文数据库 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年

9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年

10 陈辉;多维超精密定位系统建模与控制关键技术研究[D];东南大学;2015年

中国硕士学位论文全文数据库 前10条

1 章颖;混合不确定性模块化神经网络与高校效益预测的研究[D];华南理工大学;2015年

2 贾文静;基于改进型神经网络的风力发电系统预测及控制研究[D];燕山大学;2015年

3 李慧芳;基于忆阻器的涡卷混沌系统及其电路仿真[D];西南大学;2015年

4 陈彦至;神经网络降维算法研究与应用[D];华南理工大学;2015年

5 董哲康;基于忆阻器的组合电路及神经网络研究[D];西南大学;2015年

6 武创举;基于神经网络的遥感图像分类研究[D];昆明理工大学;2015年

7 李志杰;基于神经网络的上证指数预测研究[D];华南理工大学;2015年

8 陈少吉;基于神经网络血压预测研究与系统实现[D];华南理工大学;2015年

9 张韬;几类时滞神经网络稳定性分析[D];渤海大学;2015年

10 邵雪莹;几类时滞不确定神经网络的稳定性分析[D];渤海大学;2015年


  本文关键词:基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演?,由笔耕文化传播整理发布。



本文编号:478136

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/478136.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b27fe***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com