超低温奥氏体球墨铸铁微观组织与低温冲击断裂行为的研究
[Abstract]:In recent years, more and more industrial equipments have been used under extremely low temperature conditions. For example, the working temperature of large-scale ultra-low temperature BOG compressor is generally - 160 C or even lower, so there is a great demand for ultra-low temperature casting materials. The high-nickel Austenitic Ductile iron has good mechanical properties at low temperature, so it has a broad application prospect in the field of ultra-low temperature (-100) industrial manufacturing. At present, the research on high-nickel Austenitic Ductile iron is mainly focused on. In the aspect of high temperature properties, there is little research on the microstructure, impact fracture characteristics, oscillographic impact fracture process and the law of initiation and metastable propagation of impact cracks of ultra-low temperature Austenitic Ductile iron. The microstructure and friction and wear behavior of ultra-low temperature Austenitic Ductile iron are studied. The results show that the microstructure of ultra-low temperature Austenitic Ductile iron is mainly composed of austenite, graphite nodules and carbides distributed at grain boundaries. Manganese and chromium elements in the material will segregate and distribute to austenite grain boundaries to form M. The micro-hardness of 23C6 (M=Fe, Mn, Cr) carbide can reach 1200HV, which is much higher than that of austenite matrix, so the macro-hardness of the material can be improved. The carbide forming ability of chromium element is stronger than that of manganese element, which has greater influence on the friction and wear properties of the material. The wear morphology analysis showed that the material exhibited abrasive wear mechanism, in which the grain boundary carbide promoted by chromium element was used as hard particles to improve the friction and wear properties of the material. The results show that the impact properties of ultra-low temperature Austenitic Ductile Iron with different alloying elements have similar characteristics as the temperature decreases, that is, the impact properties of ultra-low temperature Austenitic Ductile Iron increase first and then decrease, and the change of nickel content has a positive correlation with the impact properties at low temperature, while excessive manganese and chromium elements have a positive correlation. Scanning electron microscopy (SEM) was used to analyze the impact fracture morphology. It was found that the ductile fracture morphology with graphite sphere or graphite sphere pit as the dimple center was observed in the temperature range from room temperature to - 193 C. The number of graphite spheres and impact properties of the impact fracture surface were also observed. There is a direct causal relationship, that is, the more graphite spheres, the better the impact performance; the change of carbide number at room temperature has no obvious impact on the impact performance of the material, but with the decrease of temperature its impact shows an increasing trend, in the ultra-low temperature of - 193 C conditions will lead to the occurrence of longitudinal microcracks in the impact fracture, seriously destroying the impact of materials. On the basis of the study on the low temperature impact property of ultra-low temperature Austenitic Ductile iron, the oscillographic impact curves at different temperatures are analyzed in depth, and the impact fracture process of the material is further revealed. The results show that the oscillographic impact curves are segmented by slope method and flexibility change rate method. The analytical method can be used to quantitatively describe the low temperature impact fracture process of materials, in which the proportion of metastable propagation energy under high load can reach more than 60% of the total impact energy, and the change trend of the two is consistent, that is, the metastable propagation energy under high load increases first and then decreases with the decrease of temperature. The main factor determining the low temperature impact property is that the low temperature impact property of the material first increases and then decreases (the maximum value is at - 80 C), because the average load of the high load metastable extension plays a leading role in the low temperature impact property from room temperature to - 80 C, and the high load metastable property when the temperature continues to decrease. At the same time, the geometric morphology of impact fracture was quantitatively analyzed by using three-dimensional laser confocal microscopy, and the surface roughness index of metastable extended section with high load at different temperatures was calculated to verify the above results. The results show that the energy absorbed in the metastable growth stage of high load in the oscillographic shock curve of ultra-low temperature Austenitic Ductile Iron corresponds to the energy absorbed in the process of crack initiation and metastable growth. Therefore, the process of impact crack initiation and metastable growth is further studied. The results show that with the decrease of temperature, the energy absorbed in the metastable growth stage corresponds to the energy absorbed in the process of impact crack initiation and meta Low-temperature Austenitic Ductile iron has better resistance to impact crack initiation; the resistance to metastable propagation of impact crack in early stage is affected by temperature, while in later stage is affected by both temperature and nickel content in the material; graphite spheres in the matrix (especially adjacent graphite spheres) and carbonization at grain boundary Material is the most important factor affecting the metastable propagation path of impact crack, and the brittle fracture tendency is aggravated by the decrease of temperature and the increase of carbide content in the material. It is found that the ductile fracture toughness of the material increases continuously with the decrease of temperature under dynamic loading, and the trend slows down obviously when the temperature is below - 80%.
【学位授予单位】:沈阳工业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TG143.5
【相似文献】
相关期刊论文 前10条
1 尹朝曦;;如何选用奥氏体钢炉管[J];石油化工设备技术;1991年02期
2 长征;适合作人体植入物用的无镍奥氏体钢[J];金属功能材料;2001年06期
3 长征;适合作人体植入物用的无镍奥氏体钢[J];金属功能材料;2002年01期
4 戴起勋,程晓农,赵玉涛,袁志钟;工程应用层次的奥氏体钢计算设计系统[J];江苏大学学报(自然科学版);2003年01期
5 王建泳;;奥氏体钢应变诱发马氏体的试验研究[J];锅炉技术;2013年03期
6 薛侃时;;高强度超低温奥氏体钢的发展[J];上海金属(钢铁分册);1988年04期
7 G.G.Bondarenko;I.N.Borodulin;曹冬根;;改善奥氏体钢耐热性的化学处理方法[J];国外金属热处理;1988年02期
8 戴起勋,火树鹏,陈原野;奥氏体钢的形变诱发组织特征[J];江苏工学院学报;1993年04期
9 李晓刚;陈华;姚治铭;李劲;柯伟;;304奥氏体钢的高温高压氢腐蚀[J];金属学报;1993年04期
10 В.Г.ΓОРБАЧ;谢揆燮;;制造仪表装备和零件用马氏体-奥氏体钢[J];铸锻热;1993年03期
相关会议论文 前5条
1 马玉喜;荣凡;周荣;朗宇平;蒋业华;;高氮奥氏体钢的韧脆转变研究[A];2007中国钢铁年会论文集[C];2007年
2 范荣团;黄胜;郭桂英;;高锰奥氏体钢中锰在晶界和晶内的非平衡偏析[A];海峡两岸电子显微学研讨会论文专集[C];1992年
3 刘国刚;;奥氏体炉管的寿命评价新技术及其应用[A];全国火电大机组(300MW级)竞赛第34届年会论文集[C];2005年
4 任大鹏;王小英;陈世勋;姜桂芬;;21-6-9奥氏体钢与氘、氚气体长期作用后显微组织[A];中国工程物理研究院科技年报(2000)[C];2000年
5 马玉喜;;高氮奥氏体钢的韧脆转变与层错能之间的关系研究[A];2009年全国热轧板带生产技术交流会论文集[C];2009年
相关重要报纸文章 前1条
1 Motomichi KOYAMA Takahiro SAWAGUCHI 张涛 译;日本研究奥氏体钢的TWIP效应[N];中国冶金报;2013年
相关博士学位论文 前7条
1 张荣华;护环用改进型超高氮奥氏体钢的铸态组织及热变形行为[D];燕山大学;2015年
2 王曼;新型奥氏体钢显微组织结构稳定性及力学性能的研究[D];北京科技大学;2017年
3 姜珂;超低温奥氏体球墨铸铁微观组织与低温冲击断裂行为的研究[D];沈阳工业大学;2017年
4 付瑞东;高锰奥氏体钢低温沿晶脆性的产生原因及抑制方法的研究[D];燕山大学;2003年
5 姜雯;超级马氏体不锈钢组织性能及逆变奥氏体机制的研究[D];昆明理工大学;2014年
6 娄建新;珠光体钢与奥氏体钢异质接头碳迁移机制及影响因素研究[D];沈阳工业大学;2014年
7 蒋志俊;过冷高氮奥氏体中温回火分解机制的研究[D];上海交通大学;2010年
相关硕士学位论文 前10条
1 王岗;高比强铁锰基奥氏体钢设计基础研究[D];大连交通大学;2015年
2 方晓阳;加工工艺对奥氏体先进高强钢组织与力学性能的影响[D];浙江大学;2016年
3 徐天帅;轧制及热处理工艺对Fe-7Mn钢的显微结构与拉伸性能的影响[D];东北大学;2014年
4 任善平;三种奥氏体钢在模拟气氛/煤灰环境中的腐蚀行为研究[D];南昌航空大学;2016年
5 胡昌文;珠光体钢和奥氏体钢焊接工艺优化及其接头性能研究[D];河南科技大学;2016年
6 匡步肖;奥氏体含量及其机械稳定性对Fe-15Cr-1Mo-0.4N-0.3C不锈钢拉伸性能的影响[D];武汉科技大学;2016年
7 康杰;碳氮增强合金化奥氏体钢及其力学行为的研究[D];燕山大学;2012年
8 李晓英;奥氏体变形对低碳高硅钢等温贝氏体组织的影响[D];燕山大学;2013年
9 贺延明;奥氏体钢冷轧及退火后的组织与性能研究[D];燕山大学;2014年
10 常帅;高锰奥氏体钢中碳化钒沉淀机制与强化机理的研究[D];大连交通大学;2013年
,本文编号:2181280
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2181280.html