高性能液滴发电机的研究
发布时间:2021-08-18 06:17
人类的持续发展和经济增长需要新的战略以应对巨大的能源挑战。目前化石燃料,如煤炭、石油和天然气仍然是能源的主要来源,然而燃烧化石燃料对环境的污染已经引起了世界的广泛关注。能源短缺是全世界面临的难题,如何高效利用可再生能源已成为全人类的共识,也是当今能源领域的前沿科研热点。以水为载体的蓝色能源,例如潮汐能、波浪动能、热差能等,因其储量巨大且无污染的特点,拥有着巨大的应用前景。对于这种理想能源的开发,传统的方法是利用笨重的水利发电设备进行发电。这种方法虽然可以有效地提取储存在连续水流中的巨大动能,但对相对低频的水能的获取却变得低效。近年来,基于摩擦起电效应和静电感应效应的摩擦纳米发电机(TENG)以及基于蒸发和湿度的水伏能源收集技术因其设计简单、材料选择多样引起了全世界的关注。然而,目前这些低频水能收集技术仍然面临耐候性差,电荷密度低和峰值功率密度小的难题,极大地限制了其实际应用前景。在本文中,在理解水固界面电现象的基础上,我们以液滴能量收集为主要研究对象,旨在通过设计新的材料和电极结构以开发高性能的液滴发电器件,实现具有强耐候性,高功率密度和能量转换效率的电能输出。首先,本文总结了近年来在...
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:161 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Droplet Energy Harvesting
1.1.1 Droplet-based Triboelectric Nanogenerator (TENG)
1.1.2 Drawing Potential on Graphene
1.2 Statement of the Challenges
1.2.1 Low Weather Resistance
1.2.2 Low Power Density and Low Energy Conversion Efficiency
1.3 Objectives of the Research
1.4 Outlines of the Thesis
Chapter 2 Literature Review
2.1 Introduction
2.2 Electrical Effects at Water-solid Interface
2.3 Fundamentals
2.3.1 Water-solid Contact Electrification
2.3.2 Ion Distribution in EDL
2.4 Electrohydrodynamic Effect
2.4.1 Electrically-induced Liquid Flow
2.4.2 Electrically-induced Wetting
2.4.3 Electrically-induced Droplet Motion
2.4.4 Liquid Manipulation Based on the Electrohydrodynamic Effect
2.5 Hydroelectric Effect
2.5.1 Flow-induced Electricity
2.5.2 Dynamic Wetting-induced Electricity
2.5.3 Electricity Generation Based on the Hydroelectric Effect
2.6 Conclusion
Chapter 3 SLIPS-TENG
3.1 Introduction
3.2 Fabrication and Characterization of SLIPS-TENG
3.2.1 Fabrication of SLIPS-TENG
3.2.2 Characterization of SLIPS-TENG
3.3 Electricity Generation of SLIPS-TENG
3.4 Charge Transparency Behavior of SLIPS-TENG
3.4.1 Charge Generation at SLIPS-water Interface
3.4.2 Effect of the Lubricant Layer Thickness
3.4.3 Theoretical Circuit Analysis of SLIPS-TENG Output Current
3.5 Robust Electricity Generation at Low Temperature
3.6 Conclusion
Chapter 4 Transistor-like Impinging Droplet Electricity Generator (TIDE-G)
4.1 Introduction
4.2 Design Rationale and Fabrication of TIDE-G
4.2.1 Design Rationale of TIDE-G
4.2.2 Fabrication of TIDE-G
4.2.3 Characterization of TIDE-G
4.3 Electricity Generation of TIDE-G
4.3.1 Boosting Electrical Outputs
4.3.2 Comparison with Conventional TENG
4.3.3 Mechanism of the Performance Enhancement
4.3.4 Equivalent Circuit
4.4 Generality of TIDE-G
4.5 Conclusion
Chapter 5 Conclusions and Outlooks
5.1 Conclusions
5.2 Outlooks
References
Acknowledgements
List of Publications
【参考文献】:
期刊论文
[1]基于表面电荷的新兴应用(英文)[J]. 张文峦,孙强强,Hans-Jürgen Butt,王钻开,邓旭. Science Bulletin. 2020(13)
本文编号:3349364
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:161 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Droplet Energy Harvesting
1.1.1 Droplet-based Triboelectric Nanogenerator (TENG)
1.1.2 Drawing Potential on Graphene
1.2 Statement of the Challenges
1.2.1 Low Weather Resistance
1.2.2 Low Power Density and Low Energy Conversion Efficiency
1.3 Objectives of the Research
1.4 Outlines of the Thesis
Chapter 2 Literature Review
2.1 Introduction
2.2 Electrical Effects at Water-solid Interface
2.3 Fundamentals
2.3.1 Water-solid Contact Electrification
2.3.2 Ion Distribution in EDL
2.4 Electrohydrodynamic Effect
2.4.1 Electrically-induced Liquid Flow
2.4.2 Electrically-induced Wetting
2.4.3 Electrically-induced Droplet Motion
2.4.4 Liquid Manipulation Based on the Electrohydrodynamic Effect
2.5 Hydroelectric Effect
2.5.1 Flow-induced Electricity
2.5.2 Dynamic Wetting-induced Electricity
2.5.3 Electricity Generation Based on the Hydroelectric Effect
2.6 Conclusion
Chapter 3 SLIPS-TENG
3.1 Introduction
3.2 Fabrication and Characterization of SLIPS-TENG
3.2.1 Fabrication of SLIPS-TENG
3.2.2 Characterization of SLIPS-TENG
3.3 Electricity Generation of SLIPS-TENG
3.4 Charge Transparency Behavior of SLIPS-TENG
3.4.1 Charge Generation at SLIPS-water Interface
3.4.2 Effect of the Lubricant Layer Thickness
3.4.3 Theoretical Circuit Analysis of SLIPS-TENG Output Current
3.5 Robust Electricity Generation at Low Temperature
3.6 Conclusion
Chapter 4 Transistor-like Impinging Droplet Electricity Generator (TIDE-G)
4.1 Introduction
4.2 Design Rationale and Fabrication of TIDE-G
4.2.1 Design Rationale of TIDE-G
4.2.2 Fabrication of TIDE-G
4.2.3 Characterization of TIDE-G
4.3 Electricity Generation of TIDE-G
4.3.1 Boosting Electrical Outputs
4.3.2 Comparison with Conventional TENG
4.3.3 Mechanism of the Performance Enhancement
4.3.4 Equivalent Circuit
4.4 Generality of TIDE-G
4.5 Conclusion
Chapter 5 Conclusions and Outlooks
5.1 Conclusions
5.2 Outlooks
References
Acknowledgements
List of Publications
【参考文献】:
期刊论文
[1]基于表面电荷的新兴应用(英文)[J]. 张文峦,孙强强,Hans-Jürgen Butt,王钻开,邓旭. Science Bulletin. 2020(13)
本文编号:3349364
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/3349364.html