Synthesis,X-Ray Characterizations and Bio-Applications of Tw
发布时间:2024-04-11 19:45
【文章页数】:160 页
【文章目录】:
ABSTRACT
Dedication
Acknowledgement
Chapter 1: Introduction
1.1. Classification of Two-Dimensional Nanomaterials for Bio-nanotechnology
1.2. Basic Structure of 2D Graphene
1.2.1. Graphene-Based Derivatives
1.2.2 Properties of Graphene-Based Nanomaterials
1.3. Basic Structure of Transition Metal Dichalcogenides
1.3.1. Electronic Configuration in TMDCs
1.3.2. Properties of TMDCs
1.4. Preparation Mechanism of Two-Dimensional Nanomaterials
1.4.1. Top-down Synthesis Approach
1.4.1.1. Micromechanical Cleavage
1.4.1.1.1. Advantages of Micromechanical Cleavage
1.4.1.1.2. Disadvantages of Micromechanical Cleavage
1.4.1.2. Liquid-Phase Exfoliation
1.4.1.2.1. Advantages of Liquid Phase Exfoliation
1.4.1.2.2. Disadvantages of Liquid Phase Exfoliation
1.4.2. Bottom-up Synthesis Approach
1.4.2.1. Hydrothermal Synthesis
1.4.2.1.1. Advantage of Hydrothermal Synthesis
1.4.2.1.2. Disadvantage of Hydrothermal Synthesis
1.4.3. Chemical Vapor Deposition
1.4.3.1. Advantages of Chemical Vapor Deposition
1.4.3.2. Disadvantages of Chemical Vapor Deposition
1.5. Mechanism of Colloidal Stability of 2D Nanomaterials
1.5.1. Ways to improve Aqueous Stability of 2D Nanomaterials
1.5.1.1. Ultrasonication
1.5.1.2. Surfactant Addition
1.5.1.3. Intercalation of Two-Dimensional Nanomaterials
1.6. pH Adjustment
1.7. X-Ray Driven Evolution
1.7.1. The Characteristics of X-Rays
1.7.2. The Generation of X-Rays
1.7.3. Lab-Based X-Ray Machines
1.7.3.1. Advantages of Rotating Anode X-Ray Device
1.7.3.2. Disadvantages of Rotating Anode X-Ray Device
1.7.4. Synchrotron-Based X-Ray Machines
1.7.4.1. Advantages of Using Synchrotron-Based X-Ray Machines
1.7.4.2. Disadvantages of Synchrotron-Based X-Ray Machines
1.7.5. X-Ray Based Characterization Techniques of Nanomaterials
1.7.5.1. X-Ray Diffraction
1.7.5.1.1. Advantages of X-Ray Diffraction
1.7.5.1.2. Limitations of X-Ray Diffraction
1.7.5.2. X-Ray Photoelectron Spectroscopy
1.7.5.2.1. Advantages of X-Ray Photoelectron Spectroscopy
1.7.5.2.2. Limitations of X-Ray Photoelectron Spectroscopy
1.7.5.3. Extended X-Ray Absorption Fine Structure
1.7.5.3.1. Advantages of Extended X-Ray Absorption Fine Structure
1.7.5.3.2. Limitations of Extended X-Ray Absorption Fine Structure
1.8. Other Characterization Techniques for 2D Nanoparticles
1.8.1. Electron Microscope
1.8.1.1. Transmission Electron Microscopy
1.8.1.2. Scanning Electron Microscopy
1.8.1.3. Atomic Force Microscopy
1.8.2. Dynamic Light
1.8.3. Zeta Potential
1.9. Thermal and Optical Behaviors of Nanomaterials
1.9.1. Photothermal Therapy
1.9.1.1. Photothermal Activation Mechanism in 2D Nanomaterials
1.9.2. Localized Surface Plasmon Resonance
1.9.2.1. Tuning LSPR to NIR Region
1.9.3. Cell Death Mechanisms
1.10. Bio-Application of 2D Nanomaterials
1.10.1. Cancer
1.10.1.1. Cancer Diagnosis and Treatment
1.10.1.2. Tumor Physiology
1.10.1.3. Tumor Growth
1.10.1.4. Tumor Vasculature and Lymphatic System
1.10.1.5. Enhanced Permeability and Retention Effect (EPR)
1.10.2. Cryopreservation
1.10.2.1. Thermal Hysteresis Protein
1.10.2.2. The Biological Role of THPs
1.10.2.3. Characteristics of Cryoprotective Agents
1.11. Cryopreservation Procedure
1.11.1. Vitrification
1.11.2. Thawing
1.12. Cytotoxicity of 2D Nanomaterials Compared with Other Biomaterials
1.13. Organization of Thesis
References
Chapter 2: PVP Intercalated Metallic WSe2 as NIR Photothermal Agents forEfficient Tumor Ablation
2.1. Introduction
2.2. Materials and methods
2.2.1. Materials
2.2.2. Characterization
2.2.3. Synthesis of 1T-WSe2@PVP
2.2.4. Preparation of 2H-WSe2@PVP
2.2.5. Cell Culture and MTT Assay
2.2.6. In Vitro Photothermal Therapy
2.2.7. Antitumor Effects In Vivo
2.2.8. In Vivo Photothermal Therapy
2.2.9. Histology Examination
2.3. Results and Discussion
2.3.1. Synthesis and Characterization of 1T-WSe2@PVP
2.3.2. In Vitro Antitumor Efficacy
2.3.3. Photothermal Effect In Vivo
2.3.4. Derivation of the Photothermal Conversion Efficiency
2.4. Conclusions
References
Chapter 3: Investigating Ice Nucleation Depression and Antifreeze Ability ofPolyvinyl Pyrrolidone Encapsulated Tungsten Diselenide Nanocomposite
3.1. Introduction
3.2. Materials and Methods
3.2.1. Materials
3.2.2. Physical Characterization of WSe2-PVP NPs
3.2.3. Ice Recrystallization Inhibition Examination
3.2.4. Rapid Rewarming by Photothermal Transformation Effect Inducing Heating
3.2.5. Synthesis of WSe2-PVP NPs
3.3. Results and Discussion
3.3.1. Synthesis and Characterization of WSe2-PVP NPs
3.3.2. Photothermal Conversion Property of WSe2-PVP NPs In ICE GrowthPrevention
3.4. Conclusion
References
Chapter 4: Harmonized Photothermal Performance Utilizing In Situ Adsorption ofFe Nanoparticles within Graphene Matrix
4.1. Introduction
4.2. Materials and Method
4.2.1. Materials
4.2.2. Synthesis of Graphene@Fe and Pure Graphene Nanosheets
4.2.3. Characterizations
4.2.4. Measurement of Heating Effect from Graphene@Fe Solution by NIR Irradiation
4.2.5. In Vitro Graphene@Fe NSs-Mediated Cell Destruction of HNE-1Nasopharyngeal Carcinoma Cells
4.3. Results and discussion
4.3.1. Synthesis and Morphology of Graphene@Fe Nanosheets
4.3.2. In vitro Photothermal Therapy
4.4. Conclusion
References
Chapter 5: Conclusion and Future Prospects
5.1. Conclusion
5.2. Future Prospects
LIST OF PUBLICATIONS
本文编号:3951048
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/3951048.html