GMM光纤电流传感器的研究
发布时间:2018-01-08 19:20
本文关键词:GMM光纤电流传感器的研究 出处:《哈尔滨理工大学》2017年博士论文 论文类型:学位论文
更多相关文章: 差动式电流传感器 超磁致伸缩材料 温度补偿 磁滞非线性校正 法布里-珀罗干涉仪
【摘要】:光学电流互感器因为其具有绝缘性好、动态范围宽等优点被广泛用于新一代电力系统在线监测以及数字电网的发展中。利用光纤光栅可靠性高,超磁致伸缩材料Terfenol-D的磁致伸缩系数高、响应速度快等优点,由光纤光栅和超磁致伸缩材料组合成电流互感器,可能满足数字化电力系统的特定需求。针对GMM-FBG电流传感器中光纤光栅同时对应力和温度交叉敏感的问题,提出了一种差动式GMM-FBG电流传感器,由两个GMM-FBG组合构成传感单元放置在两个对称磁路的相邻气隙中,并且施加大小相同、方向相反的偏置磁场,当测量电流时,两个传感单元将受到不同方向的磁场,获得差模信号,而在温度影响下,两个传感单元获得共模信号,系统自动抑制共模信号消除温度对测量的影响。应用这种差动式电流传感器实现了交流电流的测量。研究了GMM-FBG电流传感器中GMM材料的磁滞特性影响,首先利用J-A模型与Preisach模型对GMM材料分别进行了建模研究,发现这些模型的参数求解过程繁杂,很难实现对电流传感器磁滞特性的实时校正。因此提出两种基于图形学规律的磁滞非线性校正方法即比例法和顶点坐标拟合法,通过分析已知磁滞忯线的图形学规律,来预测未知输入电流对应的滞忯曲线数学模型,并用它的逆模型对此时电流传感器解调出的电压信号进行磁滞非线性校正从而求出输入电流信号,最后通过对交流电流的校正,表明采用这种校正方法能准确重建输入电流信号,与没校正时相比较,测量范围内的瞬时误差及幅度误差降低。针对GMM-FBG差动式电流传感器分辨力相对较低问题,提出了一种法布里-珀罗干涉仪原理的高灵敏度电流传感器,待测电流通过调谐法布里-珀罗干涉仪的腔长,使得输出信号的频率与待测电流相同,幅值与待测电流幅值成正比,采用一种基于窄带分布式反馈半导体激光器的正交强度解调方法来实现法布里-珀罗干涉仪的腔长解调,最终实验结果表明,基于法布里-珀罗干涉仪原理的电流传感器与差动式GMM-FBG电流传感器相比,分辨力提高了近16倍。
[Abstract]:The optical current transformer because of its good insulation, the advantages of wide dynamic range is widely used in the new generation of online monitoring of power system and the development of digital power grid. Using fiber grating with high reliability and magnetostriction of magnetostrictive material Terfenol-D high response speed and other advantages, by fiber grating and magnetostrictive combination of materials into current transformer can meet the specific needs of digital power system. According to the fiber grating GMM-FBG current sensor and the stress and temperature cross sensitivity, a differential GMM-FBG current sensor is composed of two GMM-FBG composed of sensing unit disposed adjacent to the air gap two symmetric magnetic circuit, and applying the same size, the direction of the bias magnetic field on the contrary, when measuring current, two sensing units will be subject to different direction of the magnetic field, obtain the differential signal, and the temperature in the The degree of influence, the two sensor unit gain common mode signal, the system automatically suppress common mode signal to eliminate the influence of temperature on the measurement. The application of the differential current sensor to realize the measurement of AC current. Effects of hysteresis characteristics of GMM GMM-FBG current sensor, the GMM materials are modeled using the J-A model and Preisach model, discovery process parameters to solve these models of complex, difficult to achieve real-time correction of the hysteresis current sensor. The two hysteresis nonlinearity correction method based on the graphics of ratio method and vertex coordinate fitting, through the analysis of the known hysteresis Qi line graphics rules, to predict the hysteresis curve Qi mathematical model of unknown input the corresponding current, and the inverse model of the nonlinear hysteresis of voltage signal at the current sensor is demodulated to calculate its correction The input current signal, finally through calibration of AC current, shows that this correction method can accurately reconstruct the input current signal, compared with no correction, reduce the instantaneous error and amplitude error measuring range. The GMM-FBG differential current sensor resolution is relatively low, the high sensitivity interferometer current sensor the principle of a Fabri Perot, the measured current through the tunable Fabri Perot interferometer cavity length, the output signal of the same frequency and amplitude of the current to be measured, and the measured current amplitude is proportional to the intensity demodulation method of orthogonal narrowband distributed feedback semiconductor lasers based on Fabri Perot interferometer cavity length demodulation, the final experimental results show that, compared with the principle of Fabri Perot interferometer current sensor and differential current sensor based on GMM-FBG, resolution It has been improved by nearly 16 times.
【学位授予单位】:哈尔滨理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TP212
【参考文献】
相关期刊论文 前5条
1 尤晶晶;王鸣;戎华;戴丽华;;基于SU-8光刻胶光纤法布里-珀罗加速度传感器[J];光学学报;2013年08期
2 邓建钢;郭涛;徐秋元;聂德鑫;程藻;程林;;变压器绕组测温光纤光栅传感器设计及性能测试[J];高电压技术;2012年06期
3 肖浩;刘博阳;湾世伟;赵玉才;;全光纤电流互感器的温度误差补偿技术[J];电力系统自动化;2011年21期
4 贾振元,杨兴,王福吉,郭东明,郭丽莎;具有位移感知功能的超磁致伸缩微位移执行器的研究[J];应用科学学报;2002年04期
5 易本顺,胡瑞敏,朱子碧,郑建成;磁致伸缩调制型光纤Bragg光栅的温度补偿方法[J];中国激光;2002年12期
,本文编号:1398378
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1398378.html