柔性纳米褶皱及其非接触式力学信息测量方法研究
发布时间:2018-03-01 14:12
本文关键词: 柔性纳米褶皱 柔性传感 非接触式 力学信号 单芯片矢量检测 出处:《中北大学》2016年博士论文 论文类型:学位论文
【摘要】:近年来,柔性电子、仿生皮肤、可穿戴电子等柔性传感技术成为国内外研究的热点之一,以柔性传感技术替代传统的传感技术,颠覆了对传统电子器件、传感器件及系统等形态和功能的认知。柔性传感技术通过柔性功能单元感知力学信号触发,实现对柔性形态系统的测量。目前柔性形态系统中力学信号测试主要有两种方法:力电敏感检测和力光敏感检测方法。通过力敏功能单元感知力学信号,结合测试电路进行信号处理实现信号传感,但存在着拉伸导致导线断裂、引线互连接口脱落、功能单元与金属粘附等问题。本课题研究了一种柔性系统力学信息非接触式测量方法,开展了基于纳米褶皱结构的金属导电电线结构制造、非接触式信号读取与解算方法、聚合物表面联合改性技术以及矢量信息检测方法研究。(1)开发了柔性金属纳米褶皱导电电线结构制备工艺和PDMS双面正交褶皱结构的可控制造方法。研究了表面联合改性工艺提高了金属和聚合物的粘附性能,制备了直径为50μm的金属纳米褶皱导电电线结构,可拉伸导电性能达到衬底的预拉伸极限200%,电阻误差小于4%,经过400次的重复性测试后,该结构的电阻变化仅为1.1Ω,具有良好的重复性,且研究了各向异性和各向同性柔性金属纳米褶皱导电电线结构,扩展了应用领域。(2)研究了柔性系统力学信息非接触式检测结构制造及测量方法。设计了一种柔性LC振荡电路的振动频率变化来进行力学信号检测方法,采用碳纳米管复合结构进行力学信息检测,作为LC振荡电路的电容结构;以柔性金属纳米褶皱电感结构作为非接触式读出结构,应变为100%时,误差优于5%,温度系数优于0.003℃-1,相对湿度系数优于0.00075RH%-1;以此设计了非接触式力学信息检测结构,并实现了对手指运动信息的检测。(3)研究了矢量信息解算方法及应用实现。利用双面正交褶皱在力学信息作用下的产生的相反的衍射光斑位移和光强信息,实现对单轴向和矢量力学信息的定量检测,结合自主开发的信息解算方法,矢量应力/应变信息测量误差小于0.6%,矢量位移信息测量误差小于0.4%,实现了对柔性系统中的力学信息的高性能检测。通过以上的研究,基于纳米褶皱结构的非接触式力学信号检测方法解决了现有检测方法中面临的关键技术难题,且开发了针对性加工工艺方法,提高了柔性形态传感器件和系统的便携性、集成化能力,为未来的高性能、智能化柔性传感技术发展提供新的研究思路和研究基础。
[Abstract]:In recent years, flexible sensing technology, such as flexible electronics, bionic skin, wearable electronics and so on, has become one of the hotspots in domestic and foreign research. Recognition of forms and functions such as sensor devices and systems. Flexible sensing technology is triggered by flexible functional unit sensing mechanical signals, At present, there are two main methods to measure the mechanical signal in the flexible morphological system: electroforce sensitivity detection and force-light sensitive detection method. The mechanical signal is sensed by the force sensitive function unit, and the mechanical signal can be detected by the force sensitive function unit, and the mechanical signal can be detected by the force sensitive function unit. The signal sensing is realized by combining the signal processing with the test circuit, but there is a tension that leads to the wire breaking and the lead interconnecting interface shedding. In this paper, a non-contact measurement method for mechanical information of flexible system is studied, and the fabrication of metal conductive wire structure based on nano-fold structure, non-contact signal reading and calculation method are carried out. The preparation process of flexible metal nanofold conductive wire structure and the controllable fabrication method of PDMS double-sided orthogonal fold structure were developed. The modification process improves the adhesion of metals to polymers. A metal nanofold conductive wire structure with diameter of 50 渭 m was prepared. The tensile conductivity reached the pre-tensile limit of the substrate 200 and the resistance error was less than 4. After 400 repeatability tests, The resistance variation of the structure is only 1.1 惟, which has good repeatability. The anisotropic and isotropic flexible metal nanofold conductive wire structures are studied. In this paper, the manufacturing and measurement methods of non-contact testing structures for mechanical information of flexible systems are studied, and a method for detecting mechanical signals of flexible LC oscillating circuits is designed. The carbon nanotube composite structure is used to detect the mechanical information as the capacitance structure of LC oscillating circuit, and the flexible metal nanofold inductor structure is used as the non-contact readout structure, when the strain is 100, The error is better than 5, the temperature coefficient is better than 0.003 鈩,
本文编号:1552267
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1552267.html