生产过程制造物联关键事件主动感知与处理技术研究

发布时间:2018-04-30 18:26

  本文选题:制造物联 + 关键事件 ; 参考:《贵州大学》2016年博士论文


【摘要】:互联网、物联网、云计算、大数据等技术在制造业的渗透,推动了制造业信息化的发展,形成了制造业的新技术。其中,电子技术、信息技术、计算智能、物联网与先进制造技术的融合,形成了制造物联技术,增强了制造智能化能力,形成了新型制造服务模式。制造物联通过感知、处理及利用制造数据,提供生产过程智能管控的决策支持,以促进生产过程精确控制的实现。面对“互联网+”环境下先进制造服务模式的需求,制造与服务过程中信息综合感知及智能处理等难题亟待解决。本文在分析制造物联及复杂事件处理等领域相关研究进展的基础上,研讨了生产过程制造物联关键事件主动感知与处理架构及方法,并建立了所提技术方法应用实现的相关制造过程物联管控系统。论文的具体研究工作如下:首先,在制造物联事件感知的基础理论方面,主要进行制造物联内涵及其技术特征分析,构建了面向车间生产的制造物联技术架构;研究了制造物联感知数据的来源及其特性,并分析了制造数据采集及异构系统数据集成方式,建立了制造数据管理体系模型。其次,针对制造物联事件主动感知方面,结合制造物联网特点、制造物联事件主动感知模型以及物联感知系统设计,建立基于物联网技术的事件主动感知技术架构,并设计了基于“传感网+嵌入式+Web Service”的生产过程事件感知方法,以提供精确生产和智能决策需要的重要支撑。基于智能制造模式构建了制造大数据的应用规划,并结合制造数据感知处理及应用实例,说明所提理论框架的可行性与有效性。然后,针对制造过程事件的结构化统一表达需求,采用EXPRESS语言建立了制造物联车间事件模型,并制定了EXPRESS转换为XML模式制造数据的映射规则。面向制造过程事件组织和关联方面的统一语义描述,通过生产过程事件类型及关联关系分析,建立了复杂事件结构模型;结合复杂事件操作符和可扩展标记语言语法语义,建立了基于XML的制造过程事件描述语言(XEDL),并依据生产过程事件描述实例,说明XEDL语言在事件模型描述方面的优势。基于XEDL的复杂事件表达方法,有利于解决制造过程事件关联的推理求解和统一组织问题。最后,在制造过程事件处理方面,针对制造物联系统的分布式特点,提出了基于“EDA+SOA”的复杂事件处理架构,并进行复杂事件处理模块和规则引擎的阐析。针对复杂事件模式匹配方面,建立了基于CEP的匹配式事件关联方案,运用Apriori算法对制造过程事务集进行关联规则挖掘并生成关联模板;以事件处理引擎工作原理为基础,结合关键事件和事件匹配模板的特点,提出基于有向图的启发式Esper算法,实现了基于关联模板的生产过程关键事件实时处理。应用实现方面,基于Windows7操作系统和.NET 4.0架构,借助Microsoft Visual Studio 2010和My Eclipse开发平台,以C#和Java作为开发语言,以Microsoft SQL Server2008 R2作为数据库,研发面向离散型生产过程的制造物联管控平台,以实现制造物联事件感知与处理技术研究成果的应用。基于制造物联管控平台的业务逻辑和体系结构,结合制造物联智能感知以及信息技术,建立了一套面向油辣椒生产的物联管控系统,实现了生产过程关键监控环节信息的感知及查询、事件关联分析等。综上所述,论文对制造物联关键事件主动感知与处理涉及的关键技术问题进行了探讨,通过理论研究及应用实现结果,验证了所提技术方法的可行性。生产过程制造物联关键事件主动感知的理论方法与处理技术的研究成果,将为制造业生产过程智能管控和决策优化提供理论支撑。
[Abstract]:The infiltration of Internet, Internet of things, cloud computing, large data and other technologies in the manufacturing industry has promoted the development of manufacturing information and formed a new technology in manufacturing industry. The integration of electronic technology, information technology, computational intelligence, the Internet of things and advanced manufacturing technology formed the technology of manufacturing material union, enhanced the ability of manufacturing intelligence and formed a new type of technology. Manufacturing service modes. Product is perception, processing and utilization of manufacturing data, provide the production process control intelligent decision support, to promote the realization of accurate control of the production process. In the face of "Internet plus" under the environment of advanced manufacturing mode service demand, manufacturing and service of information in the process of comprehensive perception and intelligent processing problems urgently On the basis of the related research progress in the field of manufacturing and complex event processing, this paper discusses the framework and methods of the active perception and processing of the key events in the manufacturing process, and establishes a related manufacturing process control system related to the implementation of the proposed technology and method. The specific research work of this paper is as follows: first of all, the research work is as follows: On the basis of the basic theory of event perception, this paper mainly carries out the connotation and technical characteristics analysis of the manufacture, constructs the technology framework of manufacturing material Association for the workshop production, studies the source and characteristics of the perceived data, and analyzes the manufacturing data collection and the data integration method of the heterogeneous system, and establishes the manufacturing number. According to the model of management system, secondly, in view of the active perception of the event, combined with the features of the Internet of things, the active perception model of the event and the design of the physical association perception system is designed, the event active perception technology architecture based on the Internet of things technology is established, and the production process based on the "sensor network + embedded +Web Service" is designed. Event perception method to provide important support for precise production and intelligent decision-making. Based on the intelligent manufacturing model, the application planning of large data is built, and the feasibility and effectiveness of the proposed theoretical framework are illustrated with the manufacturing data perception processing and application examples. Then, the structural unified expression of the manufacturing process needs to be expressed. The event model of manufacturing joint workshop is established in EXPRESS language, and the mapping rules of EXPRESS conversion into XML model are formulated. A unified semantic description of the event organization and association of the manufacturing process is described. The complex event structure model is established through the analysis of the event type and association relationship in the production process, and the complex event is combined with the complex event. The syntax semantics of the operator and extensible markup language, the XML based manufacturing process event description language (XEDL) is established, and the advantages of the XEDL language in the event model description are described according to the production process events. The XEDL based complex event expression method is favorable for solving and unifying the reasoning of the event Association of the manufacturing process. In the end, in the manufacturing process event processing, the complex event processing architecture based on "EDA+SOA" is proposed for the distributed characteristics of the manufacturing association system, and the complex event processing module and the rule engine are explained. A matching event association scheme based on CEP is established for the complex event pattern matching. Apriori algorithm is used to mining association rules for manufacturing process transactions and generating association templates. Based on the working principle of event processing engine and combining the characteristics of key events and event matching templates, a heuristic Esper algorithm based on directed graph is proposed to implement the real-time processing of key events in the production process based on the Association template. In the aspect of implementation, based on Windows7 operating system and.NET 4 architecture, with the aid of Microsoft Visual Studio 2010 and My Eclipse development platform, C# and Java are developed as the development language and Microsoft SQL Server2008 is used as the database to develop a manufacturing joint management platform for discrete production process, in order to realize the event perception and processing of the manufacturing material union. The application of the technical research results. Based on the business logic and architecture of the joint management and control platform of the manufacturing material, combined with the intelligent perception of the manufacture and the information technology, a set of joint management and control system for the production of oil pepper is established, which realizes the sense and inquiry of the key monitoring link information of the production process, the event association analysis and so on. In this paper, the key technical problems involved in the active perception and processing of the key events of the manufacturing association are discussed. The feasibility of the proposed technical method is verified through theoretical research and application implementation. The theoretical method of the active perception of the key events in the production process and the research results of the processing technology will be the production process intelligence of the manufacturing industry. It provides theoretical support for control and decision optimization.

【学位授予单位】:贵州大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.44;TN929.5;TP311.52

【相似文献】

相关期刊论文 前7条

1 ;“制造物联与RFID技术”专栏征稿通知[J];计算机集成制造系统;2012年09期

2 ;“制造物联与RFID技术”专栏征文通知[J];计算机集成制造系统;2012年10期

3 ;“制造物联与RFID技术”专栏征文通知[J];计算机集成制造系统;2012年11期

4 ;“制造物联与RFID技术”专栏征文通知[J];计算机集成制造系统;2013年01期

5 ;“制造物联与RFID技术”专栏征文通知[J];计算机集成制造系统;2012年12期

6 ;“制造物联与RFID技术”专栏征文通知[J];计算机集成制造系统;2013年02期

7 ;[J];;年期

相关重要报纸文章 前1条

1 一民;找出地球最早生命的证据[N];北京科技报;2001年

相关博士学位论文 前2条

1 陈伟兴;生产过程制造物联关键事件主动感知与处理技术研究[D];贵州大学;2016年

2 王建华;制造物联海量数据流处理方法研究[D];广东工业大学;2015年

相关硕士学位论文 前2条

1 曹珠英;韩国制造物责任法研究[D];华东政法大学;2008年

2 王锦煜;制造物联中车间底层数控设备监控管理系统的研究[D];江南大学;2014年



本文编号:1825674

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1825674.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e3b91***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com