全自动纳米材料合成仪的研制
本文选题:稀土掺杂纳米材料 + 小尺寸 ; 参考:《吉林大学》2016年博士论文
【摘要】:化学是一门古老却始终朝气蓬勃、发展迅速的基础学科,它渗透于我们生活中的每个角落,推动着人类社会的发展和进步。尽管学科发展迅速,但时至今日对于许多化学实验的探索仍然严重依赖科研工作者的人工操作。特别是对于某些特殊纳米材料的制备,即便合成条件复杂,反应毒性较大,但整个合成过程仍然需要靠科研工作者以手工控制的方式来完成。然而对于此类实验,过多的人工操作不仅会导致实验结果重复性不高,还可能给科研工作者带来健康隐患。当代信息技术及自动控制技术的发展已经深刻地改变了人们的生活方式,为人们的生活提供了极大的便利,我们相信如果将这些技术应用于科学实验的探索,必然也会为科学研究带来质的飞跃。基于自动控制技术在科学研究中显现出的潜在应用价值,经过几年的努力,我们成功研制了一款全自动纳米材料合成仪。该仪器能够在无人值守的情况下,实现对纳米材料合成实验中的反应温度、搅拌速度、气流速度、投料速度等实验参数的自动控制,并最终实现对纳米材料的全自动合成。与传统的人工合成方法相比,全自动纳米材料合成仪能将科研工作者从繁琐的实验操作中解放出来,也能显著降低由手工操作引起的实验误差,从而提高实验结果的重复性,并为科研工作者提供更为丰富的实验信息,为实验结果的分析和实验过程的优化提供有力的技术支持。近年来,稀土掺杂上转换纳米材料因其在生物荧光成像、光动力学治疗、药物传输及生物探测等领域展现出巨大的应用前景而成为研究热点。在全自动纳米材料合成仪的开发过程中我们也选择了稀土上转换纳米材料作为一个重要的合成示例。我们通过攻克尺寸小于10 nm的Na YF4纳米材料可重复、稳定合成的难关,展现出了全自动纳米材料合成仪在材料合成及科学研究探索方面的巨大优势。当纳米材料尺寸小于10 nm时,在人体内可通过肾脏代谢将其清除,所以小尺寸稀土上转换纳米材料在生物医药领域拥有其特殊的优势。但手工方式合成小尺寸上转换纳米材料的难度很高,并且实验的重复性较低。近年来,人们通过掺杂钆离子、引入油胺等方式探索合成尺寸小于10 nm的Na YF4纳米材料,但这些方法均是基于手工操作,不仅需要较高的学习成本,不易掌握,更重要的是仍然难以解决人为误差造成纳米材料合成重复性不高的问题。然而采用全自动纳米材料合成仪进行纳米材料的合成时,操作者仅需简单培训就可以完成整个实验,大大节约了学习成本、时间投入和体力投入,在合成材料质量、合成重复性等方面,全自动纳米材料合成仪也展现出了手工操作无法比拟的优势。全自动纳米材料合成仪是国际上首台能够稳定、可重复完成10nm Na YF4制备的全自动合成设备,该仪器的问世也填补了国内相关研究领域的空白。围绕该仪器的研制,我们主要做了以下几方面工作:1.研制了温控系统、搅拌系统、投料系统及气路系统等多个智能子系统,并针对高温热分解法合成稀土掺杂纳米材料所需要的特殊条件,从选型、硬件设计、软件设计等多方面对各个子系统进行优化,最终实现整套仪器对纳米材料合成条件的高精度控制。该合成仪中各个子系统既是可以单独工作的独立仪器,又能够通过数据总线共同协调工作。2.编写了纳米材料合成仪的主控程序,并为仪器设计了友好的人机界面。在主控程序的协调控制下,全自动纳米材料合成仪可以综合控制温度、气流速度、投料速度、搅拌速度等实验参数,自动按照实验计划完成实验。值得一提的是,仪器中内置了经过优化的稀土上转换纳米材料合成模板程序,操作者仅需在屏幕上点击3次即可控制仪器自动合成稀土上转换纳米材料。3.设计并制作了生产难度小、安装简易、维修方便、坚固耐用的纳米材料合成仪机械结构,合理地将高温热分解法实验所需的化学、电路、机械等各个控制系统集成于一个小型的仪器中,同时通过较为巧妙的设计解决了子系统在工作过程中相互干扰的问题。4.设置了多重安全措施以确保仪器的安全性。此仪器可以在进行实验的过程中自动发现温度控制、气路控制、搅拌控制等系统的意外故障,并采取合理措施保证安全,使该仪器具备了无需人工值守便可自动安全完成工作的能力。在全自动纳米材料合成仪研制成功之后,我们将其用于科学研究,并且取得了如下研究成果:1.率先使用全自动纳米材料合成仪自动合成10 nm以下Na YF4。并且通过20次重复实验,合成了尺寸均约为8.5 nm的β-Na YF4,通过尺寸统计发现,20次样品尺寸相对标准偏差为2.013%,实现了纳米材料的高可重复性合成。2.通过更改高温反应时间,观察到了纳米材料由α→β的相变过程,实现了10nm以下纳米材料尺寸的精确程控调控,完成了3.1 nm、3.8 nm、4.9 nm、7.0nm和8.5 nm等尺寸纳米材料的程控自动制备,并研究了小尺寸纳米材料发光效率与尺寸的依赖关系。3.率先利用全自动纳米材料合成仪制备样品重复性高的优势,完成了8.5 nm尺寸下Na YF4中Yb3+,Er3+最佳掺杂比例的摸索,发现在尺寸为8.5 nm的Na YF4纳米材料中,4%的Er3+和13%的Yb3+为最佳掺杂浓度。
[Abstract]:Chemistry is an ancient, vigorous, and rapidly developing basic discipline. It permeates every corner of our life and promotes the development and progress of human society. Although the discipline is developing rapidly, the exploration of many chemical experiments is still heavily dependent on the manual operation of scientific researchers. The preparation of special nanomaterials, even if the synthesis conditions are complex and the reaction toxicity is large, but the whole process of synthesis still needs to be done by manual control by researchers. However, too much manual operation will not only lead to the low reproducibility of the experimental results, but also may bring health risks to the researchers. The development of information technology and automatic control technology has profoundly changed people's life style and provided great convenience for people's life. We believe that if we apply these technologies to the exploration of scientific experiments, we will inevitably bring a qualitative leap for scientific research. In the application value, after several years of effort, we have successfully developed a fully automatic nanomaterial synthesizer. This instrument can automatically control the reaction temperature, stirring speed, airflow speed, feeding speed and so on in the case of unattended, and finally realizes the full self of nanomaterial. Dynamic synthesis. Compared with the traditional synthetic method, the fully automatic nanomaterial synthesizer can liberate the researchers from the tedious experimental operation, and can significantly reduce the experimental error caused by manual operation, thus improve the repeatability of the experimental results, and provide more abundant experimental information for the authors of the scientific research workers. The analysis of fruit and the optimization of experimental process provide strong technical support. In recent years, rare earth doped up-conversion nanomaterials have become a hot spot because of their huge application prospects in the fields of bioluminescence imaging, photodynamic therapy, drug transmission and biological detection. The rare-earth upconversion nanomaterials are also selected as an important example of synthesis. We can repeat and stabilize the synthesis of Na YF4 nanomaterials with a size less than 10 nm, showing the great advantage of the fully automatic nanomaterial synthesizer in material synthesis and scientific research. When the size of nanomaterials is less than 10 nm, In the human body, it can be removed through renal metabolism, so small size rare-earth switching nanomaterials have their special advantages in the field of biomedicine. But the difficulty of synthesizing small size upconversion nanomaterials by hand method is very difficult, and the repeatability of the experiment is low. In recent years, people have explored the way of doping gadolinium ions and introducing oil amines. Na YF4 nanomaterials with a size of less than 10 nm are synthesized, but these methods are based on manual operation, not only need higher learning cost, but also difficult to master. More importantly, it is still difficult to solve the problem of low repetition of nanomaterial synthesis caused by human error. However, the synthesis of nanomaterials using fully automatic nanomaterial synthesizer is used. The operator only needs simple training to complete the whole experiment, greatly saving the learning cost, time input and physical input, the quality of synthetic materials, synthesis repeatability and so on. The automatic nanomaterial synthesizer also shows the incomparable advantage of manual operation. The full automatic nano material synthesizer is the first stable in the world. The automatic synthetic equipment of 10nm Na YF4 can be completed repeatedly. The instrument has also filled the blank of the domestic research field. Around the development of this instrument, we have mainly done the following aspects: 1. we have developed a number of intelligent subsystems, such as temperature control system, mixing system, feeding system and gas circuit system, and the thermal decomposition of high temperature. The special conditions required by the rare earth doped nanomaterials are synthesized by the method. The subsystems are optimized from various aspects, such as selection, hardware design and software design. Finally, the high precision control of the synthetic conditions of nanomaterials is realized by the complete set of instruments. The subsystems in this synthetic instrument are both independent and independent instruments and can pass the data. .2. has written the main control program of nanomaterial synthesizer and designed a friendly man-machine interface for the instrument. Under the coordinated control of the main control program, the fully automatic nanomaterial synthesizer can control the temperature, airflow speed, feeding speed, stirring speed and other experimental parameters, and the experiment is completed automatically according to the experimental plan. It is to mention that the instrument is built with an optimized template program for the synthesis of rare earth upconversion nanomaterials. The operator can only click 3 times on the screen to control the automatic synthesis of rare-earth up conversion nanomaterial.3., which is difficult to produce, easy to install, convenient for maintenance, and a solid and durable mechanical junction of nanomaterial synthesizer. It is reasonable to integrate the control systems of chemical, circuit, machinery, etc. to a small instrument, which is necessary for the high temperature thermal decomposition experiment. At the same time, the problem of interference in the working process of the subsystem is solved by the more ingenious design..4. sets multiple safety measures to ensure the safety of the instrument. In the process of testing, we automatically discover the accidental faults of the system, such as temperature control, gas control, stirring control and so on, and take reasonable measures to ensure the safety, so that the instrument has the ability to complete the work automatically without manual duty. After studying the work of the fully automatic nanomaterial synthesizer, we use it for scientific research and obtain it. The following research results are as follows: 1. the first automatic nanomaterial synthesizer is used to automatically synthesize Na YF4. below 10 nm and the beta -Na YF4 with a size of about 8.5 nm is synthesized through 20 repeated experiments. By size statistics, the relative standard deviation of the 20 sample size is 2.013%, and the high reproducibility of the nanometer material is realized through the change of.2.. The phase transition process of nanomaterial from alpha to beta was observed at high temperature, and the size of nanomaterials below 10nm was controlled by precise program control. The program controlled automatic preparation of 3.1 nm, 3.8 nm, 4.9 nm, 7.0nm and 8.5 nm nanomaterials was completed, and the dependence of the luminescence efficiency and size of small size nanomaterials on the first use of.3. was studied. The full automatic nanomaterial synthesizer has the advantage of high reproducibility, and the optimum doping ratio of Yb3+ and Er3+ in 8.5 nm size Na YF4 is completed. It is found that 4% Er3+ and 13% Yb3+ are the best doping concentration in the Na YF4 nanomaterials with a size of 8.5 nm.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP273;TB383.1
【参考文献】
相关期刊论文 前10条
1 孙柏林;;探讨自动化行业未来发展之趋势——自动化行业应在实现中国版“工业4.0”的征程中建功立业[J];自动化博览;2015年04期
2 只升昊;;探究我国电气自动化行业的现状与发展[J];科学中国人;2014年14期
3 吕鹏飞;裴东兴;沈大伟;;基于K型热电偶的瞬态测温技术的研究[J];传感技术学报;2014年06期
4 刘建伟;刘媛;罗雄麟;;深度学习研究进展[J];计算机应用研究;2014年07期
5 姚凯凯;;我国机械设计制造及其自动化行业发展的概况[J];黑龙江科技信息;2013年25期
6 余凯;贾磊;陈雨强;徐伟;;深度学习的昨天、今天和明天[J];计算机研究与发展;2013年09期
7 丁力;宋志平;徐萌萌;陶灿辉;;基于STM32的嵌入式测控系统设计[J];中南大学学报(自然科学版);2013年S1期
8 赵志宏;;制药过程自动化技术的发展[J];机电信息;2012年32期
9 陈致远;朱叶承;周卓泉;祝磊;;一种基于STM32的智能家居控制系统[J];电子技术应用;2012年09期
10 宋维业;石峰;赵丹;秦伟平;;具有强紫外上转换发射特性的小尺寸、水溶性NaYF_4∶Yb,Tm纳米晶的合成与表征[J];发光学报;2012年07期
相关博士学位论文 前3条
1 董新平;物联网产业成长研究[D];华中师范大学;2012年
2 岳东峰;数控系统功能安全关键技术的研究[D];中国科学技术大学;2012年
3 仝猛;科氏质量流量计理论与应用研究[D];西北工业大学;2003年
相关硕士学位论文 前10条
1 童桢;直流无刷电机控制器设计[D];南昌大学;2013年
2 陈振兴;基于STM32的微型四轴飞行器研究与设计[D];河北工业大学;2014年
3 管于球;直流无刷电机控制系统的研究与设计[D];中南大学;2013年
4 熊文军;科氏质量流量计实验和应用中关键技术研究[D];合肥工业大学;2013年
5 龙云芳;工业用热式气体质量流量计的研制[D];华中科技大学;2012年
6 陈小永;直流无刷电机控制技术研发[D];中国石油大学;2008年
7 鲁晓玲;安全仪表系统的功能安全评估研究[D];首都经济贸易大学;2008年
8 王晓冲;模糊参数自整定PID温控系统的设计与研究[D];中南大学;2007年
9 李雯;热式质量流量计的设计[D];浙江大学;2007年
10 李跃峰;功能安全国际标准的研究[D];浙江大学;2007年
,本文编号:1870331
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1870331.html