基于槽技术的SOI LDMOS器件新结构研究
本文选题:绝缘体上硅 + 槽栅 ; 参考:《天津大学》2016年博士论文
【摘要】:作为SOI(Silicon On Insulator)功率集成电路的核心器件,SOI LDMOS(Lateral Double-diffused MOSFET)器件因具有低功耗、易于集成、速度快等优势被广泛应用于航空航天、无线通信、汽车电子等领域。提高器件耐压和降低器件比导通电阻是功率器件设计中非常重要的两个方面。对于传统SOI LDMOS器件,提高击穿电压的同时往往伴随着比导通电阻的增加。本文以缓解击穿电压和比导通电阻的矛盾关系为目的,对基于槽技术的SOI LDMOS器件结构进行了深入研究。在深入研究槽栅SOI结构、槽漏SOI结构以及双槽型SOI结构的击穿特性和比导通电阻特性的基础上,本文提出了三种基于槽技术的SOI LDMOS器件新结构:具有纵向漏极场板的槽栅槽漏SOI LDMOS器件新结构、具有L型源极场板的双槽型SOI LDMOS器件新结构、具有纵向栅极场板的槽栅槽源SOI LDMOS器件新结构。二维数值仿真结果表明,本论文提出的三种新结构能够缓解击穿电压与比导通电阻的矛盾关系。本论文的主要创新工作包括:1、提出了一种具有纵向漏极场板的槽栅槽漏SOI LDMOS器件新结构。该结构采用了槽栅槽漏结构,降低了器件比导通电阻;漏端采用了纵向漏极场板,该场板对漏端下方的电场进行了调制,减弱了漏极末端的高电场,提高了器件耐压。与传统SOI结构相比,击穿电压提高了4%,比导通电阻降低了53%。2、提出了一种具有L型源极场板的双槽型SOI LDMOS器件新结构。漂移区引入的槽型介质层显著提高了器件击穿电压,在L型源极场板的作用下,比导通电阻显著下降。与相同器件尺寸的传统SOI结构相比,击穿电压提高了151%,比导通电阻降低了20%。与相同击穿电压的传统SOI结构相比,比导通电阻降低了80%。3、提出了一种具有纵向栅极场板的槽栅槽源SOI器件新结构。槽栅槽源结构扩展了电流传导区域,降低了器件比导通电阻。纵向栅极场板及右侧氧化层使该结构具有更高的耐压。与传统SOI结构相比,击穿电压提高了33%,比导通电阻降低了33%。
[Abstract]:As the core device of SOI(Silicon on Insulator power integrated circuit, the SOI LDMOS(Lateral Double-diffused MOSFET device has been widely used in aerospace, wireless communication, automotive electronics and other fields because of its advantages of low power consumption, easy integration, high speed and so on. It is very important to improve the voltage resistance and reduce the specific on-resistance of power devices. For conventional SOI LDMOS devices, increasing breakdown voltage is often accompanied by an increase in specific on-resistance. In order to alleviate the contradiction between breakdown voltage and specific on-resistance, the structure of SOI LDMOS device based on slot technology is studied in this paper. On the basis of deeply studying the breakdown characteristics and specific on-resistance characteristics of groove-gate SOI structure, groove-drain SOI structure and double-slot SOI structure, In this paper, three new structures of SOI LDMOS devices based on slot technology are proposed: a new structure of slot gate drain SOI LDMOS device with longitudinal drain field plate and a new structure of double slot type SOI LDMOS device with L source pole field plate. A new structure of grooved gate source SOI LDMOS device with longitudinal gate field plate. The results of two-dimensional numerical simulation show that the three new structures proposed in this paper can alleviate the contradiction between breakdown voltage and specific on-resistance. The main innovation work of this thesis includes: 1. A new structure of slot gate slot leakage SOI LDMOS device with longitudinal drain field plate is proposed. In this structure, the slot gate drain structure is adopted to reduce the specific on-resistance of the device, and the longitudinal drain field plate is used at the drain end, which modulates the electric field below the drain end, which weakens the high electric field at the drain end and improves the device voltage. Compared with the traditional SOI structure, the breakdown voltage is increased by 4% and the on-resistance is reduced by 53.2. A new structure of double-slot SOI LDMOS device with L source pole field plate is proposed. The dielectric layer in the drift region increases the breakdown voltage of the device, and the specific on-resistance decreases significantly under the action of the L-type source field plate. Compared with the conventional SOI structure with the same device size, the breakdown voltage is increased by 151% and the on-resistance is reduced by 20%. Compared with the conventional SOI structure with the same breakdown voltage, the specific on-resistance is reduced by 80. 3. A new structure of grooved gate source SOI device with longitudinal gate field plate is proposed. The groove-gate source structure expands the current conduction area and reduces the specific on-resistance of the device. The longitudinal gate field plate and the right oxide layer make the structure have higher voltage resistance. Compared with the traditional SOI structure, the breakdown voltage is increased by 33% and the on-resistance is reduced by 33%.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN386
【参考文献】
相关期刊论文 前10条
1 石艳梅;刘继芝;姚素英;丁燕红;张卫华;代红丽;;具有L型源极场板的双槽绝缘体上硅高压器件新结构[J];物理学报;2014年23期
2 李哲;吕垠轩;何燕冬;张钢刚;;高k栅介质SOI nMOSFET正偏压温度不稳定性的实验研究(英文)[J];北京大学学报(自然科学版);2014年04期
3 石艳梅;刘继芝;姚素英;丁燕红;;具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构[J];物理学报;2014年10期
4 黄婷婷;刘斯扬;孙伟锋;张春伟;;一种新型优化热载流子退化效应的SOI-LIGBT(英文)[J];Journal of Southeast University(English Edition);2014年01期
5 刘红侠;王志;卓青青;王倩琼;;总剂量辐照下沟道长度对部分耗尽绝缘体上硅p型场效应晶体管电特性的影响[J];物理学报;2014年01期
6 范杰;张波;罗小蓉;李肇基;;High-voltage SOI lateral MOSFET with a dual vertical field plate[J];Chinese Physics B;2013年11期
7 卓青青;刘红侠;王志;;三维H形栅SOINMOS器件总剂量条件下的单粒子效应[J];物理学报;2013年17期
8 宁冰旭;胡志远;张正选;毕大炜;黄辉祥;戴若凡;张彦伟;邹世昌;;总剂量辐照效应对窄沟道SOI NMOSFET器件的影响[J];物理学报;2013年07期
9 卓青青;刘红侠;杨兆年;蔡惠民;郝跃;;偏置条件对SOI NMOS器件总剂量辐照效应的影响[J];物理学报;2012年22期
10 周昕杰;李蕾蕾;周毅;罗静;于宗光;;辐照下背栅偏置对部分耗尽型绝缘层上硅器件背栅效应影响及机理分析[J];物理学报;2012年20期
相关博士学位论文 前2条
1 罗小蓉;基于介质电场增强理论的SOI横向高压器件与耐压模型[D];电子科技大学;2007年
2 郭宇锋;SOI横向高压器件耐压模型和新器件结构研究[D];电子科技大学;2005年
,本文编号:1873060
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1873060.html