氧化物双电层晶体管及其人造突触和生化传感应用

发布时间:2018-05-13 00:17

  本文选题:电解质 + 双电层 ; 参考:《中国科学院宁波材料技术与工程研究所》2016年博士论文


【摘要】:近年来,由于电解质材料具有巨大的双电层电容效应,研究人员将电解质用作晶体管的栅介质材料实现了低压工作的晶体管器件。然而此类晶体管器件大部分是基于液体电解质栅介质和有机半导体沟道,因此在器件集成和稳定性方面存在一定的缺陷。将固态电解质用作氧化物薄膜晶体管的栅介质材料,降低器件工作电压的同时具有良好的结构扩展性和器件稳定性,还有助于设计新颖的器件结构。此外,电解质中独特的离子极化响应行为和器件界面处极强的离子/电子耦合现象,符合神经仿生和生化传感领域的需求。本论文研究了以海藻酸钠质子导体膜、自支撑壳聚糖质子导体膜和SiO_2质子导体膜等固态电解质为栅介质的氧化物双电层晶体管,并研究双电层晶体管在人造突触和生化传感等领域的应用。本论文的主要工作可以概括为以下几个方面:(1)通过简单的涂布法制备了海藻酸钠薄膜,发现薄膜具有较大的双电层电容(~4.6μF/cm~2)和高的质子电导率(~7.7×10-4 S/cm)。在一定范围内温度越高相对湿度越大,海藻酸钠质子导体膜的双电层电容越大。由于海藻酸钠质子导体膜具有三维质子传导特性,质子可在侧向电场下远距离迁移,形成侧向的质子/电子耦合。我们首次采用海藻酸钠质子导体膜作为栅介质成功研制了低压侧向耦合氧化物双电层晶体管,器件的电流开关比~3.1×106、工作电压1.5 V、阈值电压为-0.1 V、饱和区场效应迁移率为9.5 cm~2/V·s、亚阈值摆幅为100 m V/dec。并研制了基于海藻酸钠调控侧向耦合氧化物双电层晶体管的电阻负载型反相器,当反相器的电源电压为1.0 V时,电压增益高达5。基于海藻酸钠调控侧向耦合氧化物双电层晶体管的双侧栅工作模式,实现与门逻辑功能。最后,在柔性纸张衬底上制备海藻酸钠质子导体纸张氧化物双电层晶体管,该器件在较低的工作电压下表现出良好的晶体管性能,并基于双侧栅模式实现了与门逻辑功能。(2)采用简单的涂布-剥离工艺制备了自支撑壳聚糖薄膜,发现薄膜具有较大的侧向双电层电容(~0.7μF/cm~2),实验结果表明自支撑壳聚糖薄膜是电子绝缘但质子传导的固态电解质薄膜。我们首次采用自支撑壳聚糖质子导体膜作为晶体管的栅介质层,成功研制了自支撑柔性氧化物双电层晶体管。器件的电流开关比106、工作电压1.6 V、阈值电压为-0.2 V、迁移率为14.2 cm~2/V·s、亚阈值摆幅为120 m V/dec,同时具有良好的稳定性和抗弯曲性能。双电层晶体管作为一种离子/电子杂化晶体管,其电学特性受到离子迁移和离子/电子界面耦合的影响。生物体内的液体环境充满着各种离子,神经系统内的信息传递过程同样存在类似的耦合现象。因此,我们将自支撑柔性氧化物双电层晶体管作为人造突触,详细研究了该突触器件的记忆/学习、短程/长程塑性、高通滤波和多输入时空信息整合等特性。正向栅压脉冲刺激下,沟道电流呈现类似生物突触的EPSC特性;双脉冲刺激下,沟道电流呈现类似生物突触的双脉冲易化特性。人造突触的短程塑性与双电层静电耦合调控有关,而长程塑性与沟道电化学掺杂有关。另外,基于突触晶体管的双栅和多栅工作模式,我们发现共平面的侧栅之间可以相互调控、相互制约,并实现了两个突触输入的双脉冲易化和信息时空整合。通过改变调控栅极的输入信号实现了“与”和“或”脉冲逻辑,以上工作为突触电子学和神经形态计算奠定了材料和器件基础。(3)基于氧化物双电层晶体管的多巴胺传感器。采用PECVD法制备了具有高离子电导率的SiO_2质子导体薄膜,发现薄膜具有较大的双电层电容(~2.0μF/cm~2)。SiO_2质子导体薄膜的疏松孔道中吸附的水分子对双电层的形成起着关键的作用,质子在薄膜内部的传导遵循格罗斯特机理。采用SiO_2质子导体膜作为栅介质层在导电玻璃衬底上研制了高性能低压氧化物双电层晶体管,待测溶液中的多巴胺分子与ITO栅极表面的苯硼酸特异性结合形成带负电荷的多巴胺-硼酸酯络合物,改变了栅极的表面电势从而使晶体管的转移曲线出现漂移。由此我们基于氧化物双电层晶体管实现了多巴胺传感,该多巴胺传感器表现出较高的灵敏度和较好的选择性。在低的工作电压(0.8 V)下多巴胺的检测极限低至0.1n M。
[Abstract]:In recent years, because of the huge double layer capacitance effect of electrolyte materials, the researchers have used electrolytes as the gate dielectric materials for transistors to achieve low voltage transistors. However, most of these transistors are based on liquid electrolyte grid media and organic semiconductors channel. There are some defects. The solid-state electrolyte is used as the gate dielectric material of the oxide thin film transistor, which reduces the working voltage of the device while having good structural expansibility and device stability. It also helps to design novel device structure. In addition, the unique ionic polarity response in the electrolyte and the very strong ion / ion at the interface of the device are also available. The electron coupling phenomenon is in line with the demand in the field of neural bionics and biochemical sensing. In this paper, the oxide double layer transistors, such as the sodium alginate proton conductor film, the self supporting chitosan proton conductor membrane and the SiO_2 proton conductor membrane, are studied in this paper. The main work of this paper can be summarized as follows: (1) the sodium alginate film is prepared by a simple coating method. It is found that the film has a larger double layer capacitance (~4.6 mu F/cm~2) and a high proton conductivity (~7.7 x 10-4 S/cm). The higher the temperature, the higher the relative humidity, the higher the relative humidity, the sodium alginate proton conductor The higher the double layer capacitance of the membrane, the proton conducting membrane of the sodium alginate proton conductors has three dimensional proton conduction characteristics, and the proton can migrate far away from the lateral electric field to form the lateral proton / electron coupling. We successfully developed the low pressure lateral coupled oxide double layer transistor with the sodium alginate proton conductor membrane for the first time. The current switch is ~3.1 x 106, the operating voltage is 1.5 V, the threshold voltage is -0.1 V, the saturation field effect mobility is 9.5 cm~2/V s, the sub threshold swing is 100 m V/dec., and the resistance load inverter based on the sodium alginate control side coupled oxide double layer transistor is developed. When the inverter's power supply voltage is 1 V, the voltage gain is high. Up to 5. is based on the dual gate operation mode of the side coupled oxide double layer transistor based on sodium alginate to realize the gate logic function. Finally, the sodium alginate proton conductor paper oxide double layer transistor is prepared on the flexible paper substrate, which shows good transistor performance under the lower working voltage and is based on both sides. The gate mode realizes the logic function with the gate. (2) the self supporting chitosan film is prepared by a simple coating and stripping process. It is found that the thin film has a large lateral double layer capacitance (~0.7 mu F/cm~2). The experimental results show that the self supported chitosan film is a solid electrolyte membrane with electronic insulation but proton conduction. We first use the self supporting shell. As the gate dielectric layer of the transistor, the self supported flexible oxide double layer transistor has been successfully developed. The current switching ratio of the self supporting flexible oxide double layer transistor is 106, the operating voltage is 1.6 V, the threshold voltage is -0.2 V, the mobility is 14.2 cm~2/V. S, the sub threshold swing is 120 m V/dec, and it has good stability and anti bending performance. Double layer crystal is good at the same time. As an ion / electronic hybrid transistor, the electrical properties of the transistors are affected by ion migration and the coupling of ion / electronic interfaces. The liquid environment in the organism is filled with various ions. The information transfer process in the nervous system is similar to that of the coupling phenomenon. Therefore, we will support the self supported flexible oxide double layer transistor as a self support. Artificial synapses have studied the memory / learning of the synaptic device, short range / long range plasticity, high pass filtering and multi input spatiotemporal information integration. Under the stimulation of the positive gate pressure pulse, the channel current is similar to the EPSC characteristic of the biological synapse; the channel current presents the dual pulse susceptibility to the biological synapse under the double pulse stimulation. The short range ductility of the contact is related to the electrostatic coupling of the electric double layer, while the long range plasticity is related to the channel electrochemical doping. In addition, based on the double gate and multi gate mode of the synaptic transistors, we find that the common plane grids can be controlled and restricted to each other, and two synaptic inputs are realized and the information space-time integration is realized. The "and" and "" pulse logic are realized by changing the input signal of the regulating gate. The above work lays the material and device basis for the synaptic electronics and the neural morphology calculation. (3) the dopamine sensor based on the oxide double layer transistor is used to prepare the SiO_2 proton conductor thin film with high ionic conductivity by PECVD. The present film has a large double layer capacitance (~2.0 mu F/cm~2).SiO_2 proton conductor film and the water molecules adsorbed in the porous channel play a key role in the formation of the double layer. The conduction of the proton in the film follows the grunst mechanism. The high performance of the SiO_2 proton conductor film is used as the gate dielectric layer on the conductive glass substrate. The low pressure oxide double layer transistor, the dopamine molecules in the solution to be specifically combined with the boric acid on the surface of the ITO gate to form a negatively charged dopamine borate complex, which changes the surface potential of the gate and thus leads to the shift of the transistor transfer curve. Thus, we have realized DOPA based on the oxide double layer transistor. Amine sensing showed that the dopamine sensor exhibited high sensitivity and selectivity. The detection limit of dopamine was as low as 0.1N M. at a low working voltage (0.8 V).

【学位授予单位】:中国科学院宁波材料技术与工程研究所
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN32

【相似文献】

相关期刊论文 前7条

1 吴德明;;固体双电层功能元件[J];电子技术;1985年09期

2 程广禄;;玻璃电极响应机理的研究——双电层双电容理论[J];化学传感器;1990年02期

3 刘仲娥,白亮,李栋,孙石光,罗天柱,桂娟;阴极界面的双电层对液体钽电容器电性能影响的研究[J];压电与声光;2001年06期

4 许维源;;脉冲电镀及其应用(续)[J];电子工艺技术;1985年09期

5 王家峻;林晓辉;杨决宽;陈云飞;;双电层对纳米流体润滑与摩擦影响的MD模拟[J];传感技术学报;2006年05期

6 ;超低压双电层晶体管研究获进展[J];光机电信息;2010年12期

7 ;[J];;年期

相关会议论文 前8条

1 莫剑雄;;电容吸附去离子技术的理论探讨——孔道双电层模型理论[A];第一届海水淡化与水再利用西湖论坛论文集[C];2006年

2 周明;王正武;徐祖民;;泛函数法研究平行平板双电层间的相互作用[A];中国化学会第十一届胶体与界面化学会议论文摘要集[C];2007年

3 郑勇;吕会超;许浒;田大勇;牛永生;侯绍刚;;离子液体中电沉积过程的双电层结构特征[A];中国化学会第29届学术年会摘要集——第01分会:表面物理化学[C];2014年

4 刘仲娥;白亮;李栋;贾延庆;孙石光;罗天柱;桂娟;;阴极界面的双电层对液体钽电容器电性能影响的研究[A];中国电子学会第七届学术年会论文集[C];2001年

5 王正武;;泛函数法解无限长柱状胶束的双电层方程[A];中国化学会第十届胶体与界面化学会议论文摘要集[C];2004年

6 王正武;李干佐;;泛函数法研究球状胶束的双电层厚度[A];中国化学会第十届胶体与界面化学会议论文摘要集[C];2004年

7 寇丽丽;熊继军;张文栋;;微型胶体推进器喷头副反应分析与减弱方法[A];中国宇航学会深空探测技术专业委员会第五届学术年会论文集[C];2008年

8 周明;王正武;徐祖民;;泛函数法研究食品乳状液的稳定性[A];中国食品科学技术学会第五届年会暨第四届东西方食品业高层论坛论文摘要集[C];2007年

相关重要报纸文章 前1条

1 天津工业大学纺织学部教授 焦晓宁;双电层起电非织造抗静电剂在国内初露端倪[N];中国纺织报;2013年

相关博士学位论文 前9条

1 刘洋;电吸附技术用于工业废水脱盐的特性研究[D];北京化工大学;2014年

2 赵古田;固液界面双电层结构的理论与实验研究[D];东南大学;2014年

3 谭启檐;离子相关性与固液界面双电层实验研究[D];东南大学;2015年

4 郭丽祥;双电层影响下的微通道分层流动及其稳定性研究[D];天津大学;2010年

5 顾志明;超细重质碳酸钙的分散性研究与粒子双电层相互作用的探讨[D];南京理工大学;2002年

6 左启阳;非对称双电层对薄膜润滑性能影响的研究[D];华南理工大学;2012年

7 张乐道;压力驱动微尺度液—液分层流动研究[D];天津大学;2014年

8 杨娟;超级电容电池用炭类负极材料制备及性能研究[D];中南大学;2010年

9 蒋杰;双电层静电调制及其低电压氧化物薄膜晶体管研究[D];湖南大学;2012年

相关硕士学位论文 前6条

1 周明;泛函数理论精确研究带电胶体粒子双电层间的相互作用[D];江南大学;2008年

2 荆红伟;电镀CBN过程中双电层效应产生机理及消除方法的研究[D];太原理工大学;2016年

3 刘传;无机超分子双电层纳米材料的制备、表征及应用研究[D];北京化工大学;2016年

4 赵莎莎;双电层水性无机富锌涂料的制备研究[D];北京化工大学;2016年

5 张朔;电解液溶剂对石墨烯双电层储能特性影响的分子动力学模拟研究[D];浙江大学;2017年

6 徐祖民;用泛函数法对电解质溶液中胶体粒子双电层性质及相互作用的研究[D];江南大学;2008年



本文编号:1880806

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1880806.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户57691***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com