抗干扰多模兼容导航接收机射频芯片关键技术研究

发布时间:2018-05-14 08:58

  本文选题:抗干扰 + 多模兼容 ; 参考:《华南理工大学》2016年博士论文


【摘要】:随着航天工业的发展,卫星导航系统的开发与应用已成为热点研究领域。卫星导航系统为人类提供了多样性、高质量的时间和位置信息,人类利用这些基本信息,可以进一步获得地图位置、方向、速度等信息,从而解决了人们“何时?何处?”的问题。目前,人类开发的GPS、北斗、格洛纳斯和伽利略等四种导航系统已得到广泛地应用,这极大地促进了移动互联网、云计算和物联网等产业的发展,也促进了人类社会的发展和进步。本文围绕兼容北斗、GPS、格洛纳斯和伽利略等导航系统的抗干扰接收机芯片关键技术展开研究,着重对接收机系统的架构、抗干扰可重构射频前端、可重构滤波器和快速锁定低噪声锁相环进行了深入研究。分析了导航接收机的系统需求,研究了可重构多模兼容导航接收机的系统架构。由于全球四种导航系统信号频段覆盖广,全兼容导航射频芯片设计难度大,目前双通道接收机导航射频收发芯片尚未实现全兼容,为此提出了一种采用可重构的双通道接收机和单通道发射机实现全兼容的导航射频芯片架构。在综合考虑了系统功耗、可重构性和可行性的基础上,计算了多模兼容接收机的整体指标并在系统各个模块之间进行了合理划分,为各个模块电路的研究和设计奠定了基础。采用SMIC 0.13微米CMOS工艺设计了一款覆盖全频段RNSS和RDSS频点的卫星导航射频芯片。流片测试结果表明,芯片性能完全满足四种卫星导航系统信号接收的需求。针对无线通讯信号对导航系统的干扰,尤其是WIFI和LTE信号对北斗导航系统RDSS频段干扰的问题,设计了新型的、无需外置声表面波滤波器的抗干扰低噪声射频前端,实现了片上高Q值射频滤波,首次在导航接收机芯片射频前端实现了18dB以上的带外干扰抑制能力。射频前端在2.5GHz频点处的增益为44.98dB,噪声系数为2.03dB;采用电流型无源混频器和IIP2调谐,提高了线性度,从而获得高达-7dBm的IIP3和+72dBm的IIP2。为了抑制带外干扰,实现低中频/零中频接收机可重构,设计了一种新的滤波器电路。该滤波器电路采用有源RC架构,实现了阶数可重构、低通/带通可切换,兼容了各种导航系统的频点和带宽。在所有导航系统滤波器中,偏移中心频点2倍带宽处的带外抑制均大于38dB,镜像抑制大于35dB。滤波器带外抑制能力相比其他导航芯片内置滤波器提高了16dB以上。为提高导航接收系统的兼容性,提出了新型的具有双模自动频率调谐功能的锁相环电路,采用自动逻辑控制实现模式切换。测试结果表明,AFC仅耗时9μs,整个锁相环锁定时间为19μs;锁相环的频率覆盖范围为2.2~5GHz;在频率偏移100 kHz处锁相环的相位噪声为-90 dBc/Hz,在频率偏移1MHz处带外相位噪声为-120 dBc/Hz。分析了芯片设计中的关键问题,优化了版图设计,测试了导航射频芯片的通道增益、噪声系数和动态范围,并对结果进行了分析对比。测试结果表明,该多模接收机芯片可兼容所有导航系统,通道最大增益为105dB,最小噪声系数为3.1dB,动态范围为85dB,均满足导航接收机系统需求。本论文受广东省产学研合作项目“BD2/GPS终端设备核心芯片研发及产业化”(2011A090200106)资助,研究成果和创新技术不仅可以应用于卫星导航终端设备的研究与开发,也可以运用于其他无线通信系统的终端设备研发。
[Abstract]:With the development of the aerospace industry, the development and application of satellite navigation system has become a hot research field. Satellite navigation system provides human diversity, high quality of time and location information, and the human use of these basic information can further obtain map location, direction, speed and other information, so as to solve people "when? Where?" At present, four kinds of navigation systems, such as GPS, Beidou, gilus and Galileo, have been widely used, which greatly promote the development of the mobile Internet, cloud computing and the Internet of things, and promote the development and progress of human society. This article is guided by the navigation of the Beidou, GPS, gilus and Galileo. The key technology of anti-jamming receiver chip is studied. The architecture of the receiver system, the anti jamming reconfigurable RF front end, the reconfigurable filter and the fast locking low noise phase locked loop are deeply studied. The system requirements of the navigation receiver are analyzed, and the system architecture of the reconfigurable multimode compatible navigation receiver is studied. Due to the wide frequency range of the four navigation system in the world, the design of full compatible radio frequency chip is difficult. At present, the dual channel receiver navigation RF transceiver chip has not been fully compatible. A fully compatible radio frequency chip architecture is proposed by using a reconfigurable dual channel receiver and single channel transmitter. Considering the power consumption, reconfigurability and feasibility of the system, the overall index of the multimode compatible receiver is calculated and a reasonable partition is made between the modules of the system, which lays the foundation for the research and design of each module circuit. A satellite guide covering the full band RNSS and RDSS frequency points is designed by using the SMIC 0.13 micron CMOS process. The performance of the chip test shows that the performance of the chip fully meets the needs of the signal reception of the four satellite navigation systems. In view of the interference of the wireless communication signals to the navigation system, especially the interference of the WIFI and LTE signals to the Beidou navigation system RDSS band interference, a new type of anti-interference low noise free surface wave filter is designed. The RF front end of the noise radio frequency front-end has realized the high Q value RF filter on the chip. It is the first time to realize the off band interference suppression above 18dB in the RF front end of the navigation receiver chip. The gain of the RF front end is 44.98dB at the 2.5GHz frequency point and the noise coefficient is 2.03dB, and the current type passive mixer and IIP2 are tuned to improve the linearity, thus getting up to -7d Bm's IIP3 and +72dBm IIP2. have designed a new filter circuit for the reconfiguration of low if / zero IF receiver to suppress off band interference. The filter circuit uses active RC architecture to realize the reconfigurable order, low pass / bandpass switching, compatible with the frequency points and bandwidth of various navigation systems. In all navigation system filters, The off band suppression of the 2 times of the offset center frequency is more than 38dB, and the image suppression is greater than that of the 35dB. filter. Compared with the built-in filter of other navigation chips, the filter is more than 16dB. In order to improve the compatibility of the navigation and receiving system, a new type of PLL with dual mode automatic frequency tuning function is proposed. The test results show that the AFC is only 9 Mu s, the locking time of the whole phase locked loop is 19 s, the frequency coverage range of the PLL is 2.2~5GHz, the phase noise of the phase locked loop is -90 dBc/Hz at the frequency offset 100 kHz, and the phase noise at the frequency offset 1MHz is -120 dBc/Hz. analysis of the key problems in the chip design The layout design is optimized, the channel gain, the noise coefficient and the dynamic range of the RF chip are tested and the results are analyzed and compared. The results show that the multimode receiver chip can be compatible with all navigation systems, the maximum gain of the channel is 105dB, the minimum noise number is 3.1dB, the dynamic range is 85dB, and all the navigation receivers are satisfied. This paper is supported by the project "BD2/GPS terminal equipment core chip R & D and industrialization" (2011A090200106) in Guangdong province. The research and innovation technology can be applied not only to the research and development of satellite navigation terminal equipment, but also to the research and development of the terminal equipment of his wireless communication system.

【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN965.5

【相似文献】

相关期刊论文 前10条

1 ;广晟微电子推出TD-HSPA+可供商用的射频芯片[J];移动通信;2009年19期

2 ;迦美信芯 展示核心导航射频芯片[J];数字通信世界;2012年06期

3 ;华迅公司第二代射频芯片在西安问世[J];物理通报;2008年05期

4 Judy Jernigan;;帮助您验证和分析数字射频芯片组接口的新工具[J];国外电子测量技术;2006年08期

5 ;卓联半导体推出业界最高性能的植入式射频芯片,用于体内通信系统[J];电子技术;2007年05期

6 王柏华;;射频芯片技术在磅房智能称重系统中的应用[J];煤炭科技;2007年03期

7 ;华迅第二代多星座、全频点导航射频芯片[J];中国电子商情(通信市场);2008年04期

8 杨洪强;邵志刚;;抗蓝牙干扰“北斗”射频芯片的设计[J];电讯技术;2014年03期

9 ;用于LTE和3G的两颗射频芯片[J];今日电子;2009年03期

10 ;广州润芯 打造一流北斗射频芯片[J];数字通信世界;2013年06期

相关会议论文 前1条

1 黄海生;李鑫;惠楠;;北斗二代射频芯片中的多频率时钟合成问题研究[A];第三届中国卫星导航学术年会电子文集——S07北斗/GNSS用户终端技术[C];2012年

相关重要报纸文章 前10条

1 记者 安勇龙;射频芯片:工艺成本功耗是永恒热点[N];中国电子报;2007年

2 记者  孙文博;射频芯片变革:3G系统开发亮点[N];中国电子报;2006年

3 向文;中国3G技术最新突破[N];科技日报;2006年

4 记者  瞿剑;鼎芯射频芯片填补3G产业链最后空白[N];科技日报;2006年

5 刘妙;华迅第二代射频芯片问世[N];中国高新技术产业导报;2008年

6 徐瑞哲;拿下“短板”搭上3G大船[N];解放日报;2008年

7 本报记者 谢思佳;一流企业做标准 广晟八年突围成就3G“中国芯”[N];南方日报;2008年

8 包讯;应用RFID技术可保障酒类商品的防伪[N];中国包装报;2009年

9 记者 张亦筑;我市成功研发出一款卫星导航射频芯片[N];重庆日报;2014年

10 ;博通蓝牙射频芯片意在3G[N];计算机世界;2003年

相关博士学位论文 前1条

1 陈志坚;抗干扰多模兼容导航接收机射频芯片关键技术研究[D];华南理工大学;2016年

相关硕士学位论文 前5条

1 毕红亮;射频芯片高低温自动测试平台的实现[D];苏州大学;2015年

2 罗庆;基于ATE的射频芯片测试技术研究[D];华南理工大学;2013年

3 王通;基于商业射频芯片的高可靠通信系统的研究[D];天津大学;2012年

4 鲍奇兵;集成于GPS射频芯片的LDO设计[D];西安电子科技大学;2009年

5 甘甜;基于Teradyne J750测试平台的射频芯片低成本测试方案开发及实现[D];复旦大学;2010年



本文编号:1887206

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1887206.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户29a54***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com