基于模糊模型和形状特征的CT序列图像分割方法研究
[Abstract]:Computed Tomography (CT), as an advanced detection technology, reflects the internal structure and character of the object clearly and clearly in the form of image. It is widely used in the field of medical diagnosis and industrial nondestructive testing. With the development and application of CT technology, the application of CT image processing technology is realized. Quantitative, automated analysis and measurement of the measured objects to overcome the lack of qualitative subjective evaluation is one of the important directions of the development of CT technology..CT image segmentation is the key and difficult point to realize image quantization analysis, automatic recognition and measurement. This paper takes a typical CT sequence three-dimensional image segmentation as the research content, aiming at a class of boundary in medical CT The difficult problem of blurring image segmentation and the image segmentation problem of a kind of voxel scale in industrial CT is studied. A kind of automatic anatomical structure segmentation (AAR) method for medical systemic positron emission tomography / computerized tomography (PET/CT) image based on object membership and an industrial CT image crack based on shape feature are proposed. The main work of slit segmentation. The main work is as follows: 1, a PET/CT image AAR method based on object membership is proposed. In view of the original AAR method, the accuracy is higher in the segmentation of the anatomical structure of the diagnostic CT image with better image quality, but the PET image with poor image quality (the dissected structure is more obscure) and the low dose CT image (lower contrast) In this paper, a AAR method based on object membership is proposed in this paper, based on the gray and texture features of organs. In the process of modeling, the membership degree function of the object, which combines the gray and texture information of the training image, is proposed to estimate the probability of each body element belonging to the body, and the object is used in the segmentation process. The subjection function of body membership function obtains the membership degree of the object in the test image, and then combines the membership degree of the object to the initial position of the object model and the optimal position searching of the threshold, determines the optimal position of the object model, and finally obtains the result of the space distribution of the object, and uses the two indexes of the positioning error and the scale error, and the experimental verification is carried out through the PET/CT image. The results show that the improved method can achieve more accurate anatomical structure segmentation, the average positioning error is only 1-2 voxel, the average scale error is close to the standard value 1.2, and the optimal threshold training method of the AAR method is improved. In the AAR method, the original optimal threshold training method has high spatial dimension and poor adaptability, which is only applicable to the problem of gray image. In this paper, an improved optimal threshold training method is proposed by using the hyper mask and cumulative gray histogram. That is, the cumulative gray histogram of the target and the background is calculated under the super mask, and the absolute difference of the two histogram areas is calculated under any possible threshold range, and the optimal threshold is selected to make the maximum absolute difference as the optimal threshold. The improved method will search the search method. The space is reduced from 5 dimension to 1 dimension, and the optimal threshold search is achieved with high efficiency. It avoids the loss of possible optimal threshold by limiting the threshold search range. The experimental results show that the improved method can be applied to gray, texture and membership images, output reasonable object threshold to achieve more accurate anatomical structure segmentation.3, and improve the AAR method. The original AAR method is only suitable for local body area images such as chest and abdomen. It is necessary to manually divide the whole body image into a local body area. In order to improve the degree of automation, this paper uses the anatomical structure of various organs of the body to put forward a whole body structure, that is, the whole body is a tree structure with a tree structure. It is shown that all organs are modeled and segmented in sequence according to the breadth priority. The experimental verification through the PET/CT image of the whole body shows that the improved method can realize the precise segmentation of the body anatomy structure and improve the automation degree.4. The modeling and preliminary segmentation scheme between different imaging modes is proposed. The model class method is usually used. In the imaging mode, modeling - preliminary segmentation requires training data from the same imaging mode, without considering the possibility of building fast prototypes that are commonly used in various imaging modes. This paper uses the fuzzy model to contain the advantages of object shape and spatial location information, which is independent of the imaging mode, modeling and segmenting two preliminary methods in the AAR method. In the basic step, the modeling and preliminary segmentation scheme between imaging modes is proposed. The feasibility of dissecting the anatomical structure of the fuzzy model established by the diagnostic CT image on PET, low dose CT and their object membership image is verified by experiments. This provides a kind of rapid object prototype for various imaging modes. .5, an industrial CT sequence image segmentation method based on shape features is proposed. The detection of cracks inside the workpiece, automatic display and measurement is one of the difficulties that industrial CT needs to solve, and image segmentation is the key. In industrial CT system, the obtained 3D images are mostly composed of sequence fault images and the body in the image. The equivalent size equivalent in the plane of the fault and the equivalent size equivalent perpendicular to the fault direction are very different, sometimes more than 10 times, and the various artifacts of the industrial CT image are more serious. This adds to the difficulty of the fracture segmentation and quantitative measurement. In this paper, the application of the voxel dimension anisotropy is studied in this paper. The method of automatic segmentation of cracks in industrial CT sequence images: first, the two-dimensional linear structure filtering based on Hessian matrix is used to enhance the linear region of the image. On this basis, a two-dimensional histogram which combines the continuity of the interlayer gray scale and direction and the gray mean value of the inner line neighborhood is further proposed to suppress the segmentation of the artifacts. According to the maximum class entropy of the histogram, the threshold interval is determined and the two value segmentation results are obtained. Finally, the accuracy rate, the recall rate and the F1 value are used to verify the experimental results through the industrial CT sequence images of the actual workpiece. The results show that the proposed method is not only compared with the other four commonly used methods, and can be obtained. More complete and more accurate segmentation results meet the actual industrial CT sequence image crack segmentation accuracy requirements, and the degree of automation is higher.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 林三虎,孙继业,赵亦工;多用途实时序列图像场景产生器[J];红外与毫米波学报;2002年05期
2 侍术干;费树岷;翟军勇;;序列图像背景重建方法[J];南京航空航天大学学报;2006年S1期
3 高浩军;杜宇人;;基于视频序列图像的车辆测速研究[J];电子测量技术;2007年02期
4 杨延光;周智敏;宋千;王玉明;金添;;一种VFGPIR序列图像特征评估与选择新方法[J];信号处理;2009年10期
5 姚美红;程国治;于京诺;;一种基于序列图像的车辆避撞预警算法[J];拖拉机与农用运输车;2010年05期
6 赵宇明,李介谷;序列图像目标跟踪的神经网络算法[J];上海交通大学学报;1995年06期
7 孙华燕,周道炳,李生良;一种序列图像的拼接方法[J];光学精密工程;2000年01期
8 韩广良,顾海军,宋建中,董学志;基于实时序列图像复杂背景下运动目标的提取[J];吉林大学学报(信息科学版);2003年S1期
9 邱志强,陆宏伟,张小虎,于起峰;基于因子分解和光束法平差从航空序列图像恢复三维结构[J];国防科技大学学报;2004年04期
10 郑军,张伟,马兆瑞,施克仁,潘际銮;基于序列图像时间稳定性特征的背景估计技术[J];清华大学学报(自然科学版);2005年05期
相关会议论文 前10条
1 倪军;袁家虎;吴钦章;;序列图像中跟踪目标的一种简单算法[A];2004全国图像传感器技术学术交流会议论文集[C];2004年
2 李斌;胡秋平;常增田;;一种基于红外序列图像的微弱光信号时刻测试方法[A];2011西部光子学学术会议论文摘要集[C];2011年
3 蒋明;;基于序列图像的鱼类机动性分析系统[A];苏州市自然科学优秀学术论文汇编(2008-2009)[C];2010年
4 郑世友;付主木;费树岷;龙飞;;基于类四叉树结构的序列图像运动估计[A];2005年中国智能自动化会议论文集[C];2005年
5 王丹;姜小光;;利用时间序列图像的傅立叶分析重构中国地区无云NDVI图像[A];中国空间科学学会空间探测专业委员会第十七次学术会议论文集[C];2004年
6 高原;胡绍海;;复杂海平面下序列图像的快速检测[A];第十三届全国信号处理学术年会(CCSP-2007)论文集[C];2007年
7 姜长胜;王迪;葛庆平;张存林;赵艳红;;红外热波序列图像的显示与增强方法[A];光电技术与系统文选——中国光学学会光电技术专业委员会成立二十周年暨第十一届全国光电技术与系统学术会议论文集[C];2005年
8 王书民;张爱武;崔营营;张珍梅;;基于无人飞艇数字摄影测量系统及其航拍序列图像拼接[A];2009全国测绘科技信息交流会暨首届测绘博客征文颁奖论文集[C];2009年
9 彭丰平;鲍苏苏;;基于CT序列图像肝脏及其管道的分割[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
10 施灿辉;刘晓平;吴宜灿;;基于VTK的医学序列图像可视化[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
相关博士学位论文 前10条
1 王慧倩;基于模糊模型和形状特征的CT序列图像分割方法研究[D];重庆大学;2016年
2 王博;红外序列图像中运动弱小目标时域检测方法[D];西安电子科技大学;2010年
3 陈颖;序列图像中微弱点状运动目标检测及跟踪技术研究[D];电子科技大学;2003年
4 张鹏林;复杂场景视频序列图像运动物体提取方法研究[D];武汉大学;2005年
5 梁燕;基于小波变换的序列图像感兴趣区域编码[D];天津大学;2005年
6 彭科举;基于序列图像的三维重建算法研究[D];国防科学技术大学;2012年
7 戴渊明;视频序列图像中目标跟踪技术研究[D];浙江大学;2012年
8 祁艳杰;复杂结构件的X射线序列图像融合技术研究[D];中北大学;2015年
9 李立春;基于无人机序列成像的地形重建及其在导航中的应用研究[D];国防科学技术大学;2009年
10 赵立兴;基于视频序列的运动目标滤波、分割与检测算法研究[D];燕山大学;2013年
相关硕士学位论文 前10条
1 江耿红;多源序列图像的配准与融合技术研究[D];山东大学;2015年
2 胡志发;肾脏CT序列图像分割方法研究[D];哈尔滨工业大学;2015年
3 邵昊阳;基于视觉显著性的乳腺超声序列图像分割方法[D];哈尔滨工业大学;2015年
4 杨艳静;序列图像去雾技术的研究[D];电子科技大学;2014年
5 付达;基于序列图像的空中目标检测及识别方法研究[D];西安电子科技大学;2014年
6 余清洲;航拍序列图像自动拼接技术的研究[D];集美大学;2015年
7 朱士伟;序列图像三维重建关键技术研究[D];东南大学;2015年
8 焦孟君;视频序列图像中运动目标检测与跟踪算法研究[D];燕山大学;2016年
9 张扬;跟踪系统目标检测技术研究[D];西安工业大学;2016年
10 揭昭斌;基于序列图像的空间非合作目标三维重建方法与精度分析[D];哈尔滨工业大学;2016年
,本文编号:2166739
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2166739.html