SiGe HBT低噪声放大器的研究
[Abstract]:As a process to compromise the price and performance of CMOS technology and Ga As, SiGe HBT (Hetrojunction bipolar transistor, HBT) technology has a very good application prospect. This process combines RF applications and designs a variety of RF communication circuits based on high performance devices. Among them, low noise amplifier circuits (Low noise amplifier) are the most important. Representative. As the core circuit of the front end of the receiver, the low noise amplifier requires a variety of tradeoffs between gain, matching, noise coefficient and linear performance. The performance of the circuit determines the overall performance of the receiver. The X, Ku band receiver and the higher frequency microwave level circuit for the current hot research, the electric circuit The road is more difficult to develop. This paper makes a more in-depth study of the SiGe HBT transistor model and LNA circuit. The main innovations are as follows: the process characteristics of SiGe HBT and the bipolar transistor small signal model are analyzed, and the main noise contributors of the SiGe Hicum devices are proposed. On this basis, the dual port network is analyzed in the circuit noise side. On the basis of the SiGe HBT process, a small signal model of the SiGe process is proposed on the basis of the bipolar transistor small signal, and the noise model of the SiGe transistor is proposed with the physical model of the Hicum model, based on the physical model, and the multi port noise network is proposed based on the analysis of the dual port network. The theory of the collaterals, which can be applied to the analysis of the circuit level, is not limited to the single device transistor analysis, and provides a solid theoretical guidance for the design of the low noise amplifier. Several important indexes of the SiGe low noise amplifier are analyzed, including input matching, gain flatness and linear specificity. The 14 order filter matching network is designed. The circuit optimization of the structure makes the input matching and noise performance best compromise. In the aspect of gain flatness, the problem of matching and network noise is analyzed, and the 14 order 6~14GHz low noise amplifier is designed by using on chip inductance compensation and zero pole method. The gain of the circuit is only 0.4dB, according to the gain allocation principle. At the same time, a parallel parallel negative feedback structure is used at the input end to ensure the input matching. The circuit introduces an extra zero point through the inductor at the third stage to compensate the pole roll drop, and the local negative feedback and the whole negative feedback are used at the same time. In view of the linear degree difference of SiGe devices, a method to optimize linear performance of single stage SiGe low noise amplifier based on the nonlinear model of bipolar transistors is proposed in accordance with the weak nonlinear model of transistors. According to the weak nonlinear model of transistor, the linear performance optimization method of single stage SiGe low noise amplifier is carried out based on the Volterra series. The analysis method of linear degree is proposed, and the contribution of each parameter online degree is quantified, which makes the bipolar LNA have the IIP3 performance of -7.7dBm under ultra wide frequency. Design UWB band and X, Ku band ultra wideband SiGe low noise amplifier. The LNA in UWB system is studied in noise flatness, and the noise based on quality factor optimization is proposed. In the circuit design of X, Ku band low noise amplifier, the design process of the low noise amplifier is more focused on the complete design process. The input matching, gain, linearity and noise of the corresponding circuit are analyzed and optimized respectively. At the same time, the common questions and optimization methods of the radio frequency layout are put forward, on the basis of the circuit design and optimization. The test method of high frequency circuit is put forward, the test method flow of RF circuit is described in detail, the results are analyzed and discussed. The S parameter measurement, noise measurement and linearity measurement are emphasized. The LNA can achieve the gain of 16dB and the noise coefficient below 4dB in the applied frequency band, and the 1dB compression point also realizes the -18dBm. suppression for the mirror frequency. The type receiver is designed for two types of low noise amplifier structures for SiGe with the function of mirror frequency suppression for different application bands. Among them, the passive filter structure used by the K frequency band low noise amplifier realizes the 33.6dB mirror frequency suppression ratio and the gain of 19d B; the second low noise amplifier realizes 33d through the active mirror filter on the chip. The mirror frequency suppression ratio of B is of good practicability and theoretical guidance. The design process and design method of SiGe HBT low noise amplifier are described in detail and well. The circuit design work is expounded in detail from the theory and design aspects by a variety of examples. It is common in the aspects of gain, matching, linearity and noise. An example is given to analyze and illustrate, providing important theoretical guidance and design ideas for LNA circuit design.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN722.3
【相似文献】
相关期刊论文 前10条
1 ;高频低噪声放大器[J];国外电子元器件;2001年01期
2 安毅,吕昕,高本庆;振幅比较单脉冲系统中前端低噪声放大器的选择[J];雷达与对抗;2001年01期
3 曹克,杨华中,汪蕙;低电压低功耗CMOS射频低噪声放大器的研究进展[J];微电子学;2003年04期
4 一凡;全波段毫米波低噪声放大器[J];微电子技术;2003年03期
5 张广,郑武团,田海林;低噪声放大器的网络设计法[J];现代电子技术;2004年01期
6 ;安捷伦科技推出具关断功能的超低噪声放大器模块[J];电子与电脑;2005年11期
7 张红南;黄雅攸;蒋超;颜永红;;高增益低功耗CMOS低噪声放大器的设计[J];微计算机信息;2008年29期
8 刘峻;卢剑;李新;郭宇;苏建华;梁洁;;一种低噪声放大器的白噪声分析[J];中国集成电路;2009年08期
9 周伟中;;低噪声放大器的仿真设计[J];科技资讯;2010年14期
10 张维佳;;非平衡变换低噪声放大器的设计[J];信息通信;2012年02期
相关会议论文 前10条
1 张乾本;;45°K超低噪声放大器[A];1993年全国微波会议论文集(下册)[C];1993年
2 高飞;张晓平;郜龙马;朱美红;曹必松;高葆新;;低温低噪声放大器特性研究[A];2003'全国微波毫米波会议论文集[C];2003年
3 郑磊;胡皓全;田立卿;;低噪声放大器的设计[A];2005'全国微波毫米波会议论文集(第三册)[C];2006年
4 郭伟;鲍景富;;低噪声放大器稳定性分析与设计方法[A];2005'全国微波毫米波会议论文集(第二册)[C];2006年
5 贺菁;董宇亮;徐军;李桂萍;;5mm宽带低噪声放大器的研制[A];2007年全国微波毫米波会议论文集(上册)[C];2007年
6 刘畅;梁晓新;阎跃鹏;;射频宽带低噪声放大器设计[A];2009安捷伦科技节论文集[C];2009年
7 王云峰;李磊;梁远军;朱文龙;;双平衡支路低噪声放大器的设计与测试[A];2009安捷伦科技节论文集[C];2009年
8 刘宝宏;陈东坡;毛军发;;一种采用正体偏置和增益增强技术的低电压低功耗低噪声放大器[A];2009年全国微波毫米波会议论文集(下册)[C];2009年
9 张利飞;汪海勇;;低噪声放大器的仿真设计[A];2009年全国微波毫米波会议论文集(下册)[C];2009年
10 王汉华;胡先进;;卫星电视低噪声放大器的设计[A];1997年全国微波会议论文集(上册)[C];1997年
相关重要报纸文章 前1条
1 四川 张达 编译;增益从1到1000倍可变的高精度低噪声放大器[N];电子报;2004年
相关博士学位论文 前10条
1 井凯;SiGe HBT低噪声放大器的研究[D];西安电子科技大学;2016年
2 曹克;低电压低功耗CMOS射频低噪声放大器设计[D];清华大学;2005年
3 刘宝宏;CMOS工艺的低电压低噪声放大器研究[D];上海交通大学;2011年
4 黄煜梅;CMOS蓝牙收发器中低噪声放大器的设计及高频噪声研究[D];复旦大学;2004年
5 许永生;CMOS射频器件建模及低噪声放大器的设计研究[D];华东师范大学;2006年
6 李琨;低噪声放大器动态范围扩展的理论和方法研究[D];天津大学;2010年
7 王军;低噪声放大器模块化分析与设计的等效噪声模型法的研究[D];电子科技大学;1999年
8 黄东;面向多带多标准接收机的宽带CMOS低噪声放大器研究[D];中国科学技术大学;2015年
9 彭洋洋;微波/毫米波单片集成收发机中关键电路的设计及其小型化[D];浙江大学;2012年
10 李芹;无生产线模式微波单片集成电路设计与实验研究[D];东南大学;2005年
相关硕士学位论文 前10条
1 张全;宇航用低噪声放大器研制及其可靠性研究[D];西安电子科技大学;2012年
2 冯永革;低噪声放大器的研究与设计[D];南京理工大学;2015年
3 易凯;CMOS毫米波低噪声放大器设计[D];电子科技大学;2014年
4 赖宏南;超宽带大动态自动电平控制系统研究[D];电子科技大学;2014年
5 李佩;微波单片专用集成电路设计[D];电子科技大学;2009年
6 王轲;微波宽带低噪声放大器研究[D];电子科技大学;2015年
7 李凯;平衡式低噪声放大器设计[D];电子科技大学;2015年
8 赵艳阳;X波段限幅低噪声放大器设计与实现[D];电子科技大学;2014年
9 李辛琦;1.2GHz CMOS低噪声放大器的仿真设计与实现[D];电子科技大学;2015年
10 孙海昕;基于CMOS工艺的射频低噪声放大器的设计[D];黑龙江大学;2015年
,本文编号:2169450
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2169450.html