具有执行器非线性和状态约束的机器人自适应控制
[Abstract]:With the cross-disciplinary development of information, machinery, materials and so on, robots have shown good application potential and strong market demand in assisting or even replacing human beings in coordinating work. Therefore, the research of robot technology has not only obvious application prospects, but also important theoretical value. It is described as a multi-degree-of-freedom motion/force hybrid nonlinear system, focusing on how to deal with the uncertainties such as actuator nonlinearity and state constraints, aiming at improving the control performance of the robot. The structure of this paper is arranged as follows. Chapter 1 describes the relevant research background and research significance. Chapter 2 outlines the modeling and control of the robot system. Chapters 3 to 7 consist of five chapters, which are the main contents of this paper, including three aspects: 1) Chapters 3 to 4 mainly study the adaptive fuzzy coordinated control of robot with actuator nonlinearity; 2) Chapter 5 studies the adaptive control of generalized actuator nonlinearity robot based on Nussbaum function method. Chapters 6 to 7 mainly study the adaptive neural network coordinated control with state constraints. Specifically, these five chapters correspond to the following contents in turn: 1. The coordinated control problem of robot grasping object in the case of actuator clearance nonlinearity is studied, and a motion/force compensating actuator clearance is proposed. Firstly, based on the idea of backlash nonlinear inverse compensation, an inverse model adaptive control method for actuator backlash is constructed. Then, a decentralized robust adaptive fuzzy coordination control method is established to ensure that the motion and internal force of the object converge to the expected value respectively. Finally, the proposed method is applied to a two-arm robot system. The results of simulation and comparison with the existing methods show that the proposed method is effective. Secondly, the coordinated control problem of multi-manipulator under actuator hysteresis nonlinearity and motion constraints is studied, and a robot adaptive fuzzy control scheme based on Barrier Lyapunov function method is proposed. The hysteresis model is established in the dynamic equation of the manipulator, and then the adaptive control technique is introduced to compensate and reduce the influence of the unknown hysteresis nonlinearity. The qualitative theorem guarantees the motion and force control performance of the proposed method in the coordination process of multiple manipulators. Finally, several groups of comparison results show the effectiveness of the proposed method. The proposed method not only extends the unknown control coefficients from constants to time variables, but also removes the known assumptions of the upper and lower bounds of the control coefficients. The state of the robot system converges asymptotically to the desired trajectory in the case of generalized actuator nonlinearity. Furthermore, to reduce the control jitter caused by the use of traditional Nussbaum functions, a control method based on saturated Nussbaum functions is proposed. The proposed Nussbaum functions are constructed based on the idea of time expansion and reduce the traditional amplitude expansion Nus. In addition, by combining with the adaptive control method, a control method is established to deal with multiple unknown time-varying control coefficients, which facilitates the stability analysis of MIMO systems and guarantees the asymptotic tracking of the motion state of the robot system under unknown actuator dynamics. Fourthly, the problem of state hysteresis constraints caused by the output mechanism in the coordinated control of two manipulators is studied. An adaptive neural network controller is proposed to realize the coordinated control of robot motion and force. At the same time, combining with the adaptive neural network control method, the upper bound of neural network weight matrix is estimated, the number of adaptive laws to be updated is reduced, and the computational load to complete the real-time control is reduced. The results of performance comparison and evaluation further validate the effectiveness, superiority and robustness of the proposed method. Fifthly, the problem of coordinated control of multi-manipulators with unknown output dead-time constraints and uncertainties is studied, and a motion/force adaptive neural network coordinated control method for multi-manipulators is proposed. By using the Lyapunov stability theory, the motion and internal force control in the coordinated operation of multiple manipulators are proved. Finally, simulation results illustrate the effectiveness of the proposed method.
【学位授予单位】:广东工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP242
【相似文献】
相关期刊论文 前10条
1 ;2001恩格尔伯格机器人奖颁布[J];机器人技术与应用;2001年05期
2 ;神奇的机器人世界[J];机电新产品导报;2001年Z5期
3 宋树藩;采用机器人的有效自动化[J];世界制造技术与装备市场;2001年06期
4 ;创造出色的机器人[J];个人电脑;2003年04期
5 ;危险作业机器人——人类的好帮手——访国家863机器人技术主题专家组专家戴先中教授[J];机器人技术与应用;2003年03期
6 小才;;机器人时代[J];电脑爱好者;2006年13期
7 宋海宏;;机器人技术展望[J];山西煤炭管理干部学院学报;2006年04期
8 董炀斌;蒋静坪;何衍;;一种基于双令牌的多机器人协作策略研究[J];计算机工程;2007年12期
9 王国奎;刘彦波;;草方格铺设机器人综合、高效控制系统的设计[J];科技咨询导报;2007年20期
10 陈秀珍;潘拓;;21世纪初机器人技术的走向[J];中国设备工程;2007年11期
相关会议论文 前10条
1 杨朝虹;张海珠;;机器人技术的应用与发展[A];先进制造技术论坛暨第五届制造业自动化与信息化技术交流会论文集[C];2006年
2 王明辉;王楠;李斌;;面向灾难救援的机器人控制站系统设计[A];中国仪器仪表学会第十二届青年学术会议论文集[C];2010年
3 郭戈;王燕;王伟;;一种多机器人协作方法[A];第二十届中国控制会议论文集(下)[C];2001年
4 崔世钢;邴志刚;彭商贤;王玉东;;基于远程脑概念的服务机器人开发平台的设计与研究[A];先进制造技术论坛暨第二届制造业自动化与信息化技术交流会论文集[C];2003年
5 杨莹;丁X;许侃;;国际机器人科学知识前沿演化的可视化分析[A];科学学理论与科学计量学探索——全国科学技术学暨科学学理论与学科建设2008年联合年会论文集[C];2008年
6 唐矫燕;赵群飞;黄杰;杨汝清;;基于两足步行椅机器人的人在环中的助残机器人控制系统[A];第二十六届中国控制会议论文集[C];2007年
7 薛颂东;曾建潮;杜静;;具运动学特性约束的群机器人目标搜索[A];2009中国控制与决策会议论文集(2)[C];2009年
8 张国伟;李斌;龚海里;王聪;郑怀兵;;废墟洞穴搜救机器人控制软件设计与实现[A];中国仪器仪表学会第十二届青年学术会议论文集[C];2010年
9 崔世钢;方景林;刘嘉q;彭商贤;邴志刚;;服务机器人开发中测控问题的研究[A];中国仪器仪表学会第五届青年学术会议论文集[C];2003年
10 吴国盛;李云霞;李骊;;一种基于极坐标系下的机器人动态避碰算法[A];2006中国控制与决策学术年会论文集[C];2006年
相关重要报纸文章 前10条
1 冬冬;看看自动化机器人在包装业中能起多大作用[N];中国包装报;2005年
2 莽九晨 周之然;有感“机器人道德法”[N];人民日报;2007年
3 记者 陈琳;机器人总动员[N];第一财经日报;2010年
4 记者 孙亚斐;千余支队伍携机器人亮相金城[N];兰州日报;2011年
5 崔鑫;机器人也能和您一起下厨[N];北京科技报;2012年
6 特约记者 杨保国;中国科大“蓝鹰”称雄机器人世界杯[N];大众科技报;2007年
7 本报记者 陈淑娟;机器人走近生活[N];计算机世界;2006年
8 虎虎;科学好玩(三)[N];四川科技报;2007年
9 孙潜彤;新松公司:在机器人研发领域显身手[N];经济日报;2008年
10 财宣邋Q孟推,
本文编号:2193112
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2193112.html