社会化网络集群结构分析及动态演化模型研究
[Abstract]:Social networks are virtual networks that can describe real social activities. The clustering results of the virtual networks represent the state of real social groups, which may naturally form for some reason (family members, colleagues or the same interests, etc.). The network structure can reveal the characteristics and development trends of the real society. Although the analysis of the distribution of nodes in the community and the association between communities can help to get the information of user characteristics and network topology, the diversity and complexity of personas and relationships lead to the node attributes and nodes in the social network. Because of the diversity and complexity of point-to-point association, the study of social network structure can not be limited to non-overlapping classification, clustering and other algorithms. If the only valuable knowledge in a social network is the network structure, then the characteristics of a node are the feature sets of all its edges. Social networks allow users to generate personalized data independently, and rich user information is conducive to the full analysis of user characteristics. However, the data generated by users is not standardized and the process of information generation is uncontrollable, so the data is large-scale and low-quality. Therefore, it is more difficult to manage complex network information, and its processing objects can not be limited to written knowledge. We must attach importance to the central node or expert node with a large amount of domain knowledge. It can provide high-quality information for complex networks and expand the effective knowledge reserve of networks.In addition, focusing on core nodes similar to central nodes can help to know the law of information transmission, predict the development trend of network structure, and analyze the probability of node state change.Because the social network is a dynamic network, the stability of the analysis algorithm needs to be improved. Control within a reasonable range, that is, the algorithm is too stable to be sensitive to new data, on the contrary, the algorithm is vulnerable to the impact of temporary information and the wrong division of nodes. Digging algorithms pose challenges, but whether it is social search, personalized recommendation, or multi-role relocation, knowledge mapping is built on the basis of social networks, which is not possible for all network platforms in the past. With the advancement of mobile network technology, social network presents micro-information and mobile features, making the network more comprehensive coverage of life, so the study of social network has attracted more and more researchers, enterprises and government departments'attention. In any case, the low operating costs of social networks, as well as more sticky services, are changing the traditional pattern of the Internet. Temporary attributes and the ability of nodes to maintain their inherent state are used to propose a stable community partitioning algorithm. The algorithm proposed in this paper is not only based on the new data or the existing characteristics of nodes, but also considers the historical data of network topology, the ability of nodes to maintain their inherent state and the degree of change of new data to calculate the state. Secondly, an attribute-based EDGE-BINDING algorithm is proposed to show the complex network structure in a clearer way, which will be similar to the edge-feeding. Thirdly, taking the analyzed object as the central node, the probability of association between the node and the existing path but not directly connected nodes is calculated, so that the effective knowledge of the network can be reasonably expanded to make up for the small data problem of deterministic events, and then according to the belonging of the edges. Fourthly, an information retrieval method for users with more knowledge in the field of interest is proposed, that is, to discover expert users by constructing user interest distribution curve and calculating slope at critical point. Fifthly, a knowledge representation method and an architecture fusion strategy are proposed to discover implicit semantic relationships by mining the structure of multiple documents. This method greatly reduces the computational complexity of the algorithm and improves the accuracy of text matching. Sixthly, a Bayesian network is constructed to reduce the complexity of the probability model, and the influence between nodes in the low density network is analyzed in advance. The method calculates the degree of mutual influence between nodes according to the three different association forms and the shortest distance between users, analyzes the degree of state change of adjacent nodes, and predicts the action trend of central nodes. Finally, the experimental parts of each chapter are introduced in different data sets. The proposed algorithm is compared with other similar algorithms, and the results are visualized and the advantages and differences are explained in detail to verify the feasibility and correctness of the algorithm.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP393.09
【相似文献】
相关期刊论文 前10条
1 王萍;;社会化网络的信息扩散研究[J];情报杂志;2009年10期
2 吴yP昕;吴波;张明;;社会化网络隐患对国家信息安全的影响[J];当代传播;2010年01期
3 李遵白;;社会化网络时代舆情变动的基本机制与科学管理研究[J];前沿;2010年21期
4 翟旭瑾;;博客的社会化网络连接对社会发展的影响[J];内蒙古统战理论研究;2013年01期
5 肖們;;社会化网络中基于真实虚拟关系的营销分析[J];现代传播(中国传媒大学学报);2013年09期
6 翟旭瑾;;博客的社会化网络连接对社会发展的影响[J];金田;2013年01期
7 肖們;;社会化网络的发展与文化产业的演进特征[J];湖南师范大学社会科学学报;2014年04期
8 曹三省;;网人合一,物我不二:社会化网络媒体模式技术演进与模式变革[J];中国传媒科技;2012年09期
9 赵林静;;社会化网络环境下图书馆内容营销策略研究[J];中国民航飞行学院学报;2013年03期
10 ;关注[J];程序员;2008年04期
相关会议论文 前3条
1 周宇煜;;移动社会化网络业务发展趋势和商业模式探讨[A];2007年中国通信学会“移动增值业务与应用”学术年会论文集[C];2007年
2 张锐;;网络媒体的现状与变局[A];数字未来与媒介社会1[C];2010年
3 陈熹;徐晓杰;冒然;;社会化网络下的自我表露:风险效用决策模型[A];第五届(2010)中国管理学年会——信息管理分会场论文集[C];2010年
相关重要报纸文章 前10条
1 乔文心;社会化网络改变世界[N];青岛日报;2013年
2 吴加录;预知个性需求 社会化网络推动智能搜索[N];中国计算机报;2008年
3 浙江大学 吴朝晖;社会管理须关注社会化网络创新[N];科技日报;2011年
4 张丹;社会化网络在档案管理中的运用[N];黄河报;2011年
5 本报记者 董潇;社会化网络主宰互联网[N];中华工商时报;2011年
6 见习记者 赵晓悦;海银:“孵”出下一个facebook?[N];21世纪经济报道;2012年
7 王超;市检察院积极构建预防职务犯罪社会化网络[N];四平日报;2006年
8 本报记者 毛晶慧;开心网郭巍:社会化网络营销理性爬坡[N];中国经济时报;2011年
9 姜姝;把脉“Facebook魔力”[N];中国电脑教育报;2007年
10 记者 文峰 实习生 彭潋;推广“社团矫治”戒毒新模式[N];重庆日报;2005年
相关博士学位论文 前3条
1 刘树栋;基于位置的移动社会化网络推荐技术研究[D];北京邮电大学;2015年
2 国琳;社会化网络集群结构分析及动态演化模型研究[D];吉林大学;2016年
3 吴超;在线社会化网络的语义分析和语义社会网的构建[D];浙江大学;2010年
相关硕士学位论文 前10条
1 任军虎;移动图书馆户服务交互研究[D];西安电子科技大学;2014年
2 张宗宇;社会化网络的链接预测[D];北京邮电大学;2011年
3 宋薇;社会化网络用户行为研究与应用[D];西安电子科技大学;2013年
4 马艳艳;社会化网络中的社团发现与应用[D];西安电子科技大学;2013年
5 贾晓英;运用社会化网络开展大学生思想政治教育研究[D];湖南科技大学;2011年
6 崔明慧;公民社会议题下网络虚拟自我认同初探[D];山东大学;2012年
7 张圣超;社会化网络资源融合的人脉手机应用设计[D];上海交通大学;2014年
8 徐原;基于情境感知的移动社会化网络研究与设计[D];大连海事大学;2010年
9 凌文倩;西安志胜机电有限公司传统招聘与社会化网络招聘的比较研究[D];西北农林科技大学;2014年
10 酆爱文;社会化网络学习的研究[D];天津大学;2012年
,本文编号:2211429
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2211429.html