条纹阵列探测激光雷达测距精度与三维测绘技术研究
[Abstract]:The stripe array detection lidar has many advantages, such as long range, wide detection field, large range depth and high data rate. It has important application prospects in three-dimensional reconstruction of long-range targets and airborne wide-range mapping. In this paper, the ranging accuracy and three-dimensional mapping technology of the stripe array detection lidar are studied theoretically and experimentally. Based on the range resolution principle and the cascade imaging process of the column detection lidar, combining with the lidar equation and the linear spread function of the detector, the theoretical expression of the signal distribution function in a single time-resolved channel is derived. The noise characteristics of radar system are classified and discussed according to the correlation between noise and signal strength. The theoretical expressions of mean and variance of multiplicative noise and additive noise are given respectively. Then the theoretical model of noisy fringe signal is established to analyze and detect the ranging accuracy of the system. According to the imaging characteristics of the stripe array detection lidar, two working modes, constant transmitting power and near saturation imaging, are established in the signal detection process, so that more ideal original stripe images can be obtained at different detection distances and application requirements. The theoretical model of ranging accuracy is established by using the error transfer theory. The theoretical expressions of additive noise error, multiplicative noise error and sampling error are deduced under two different operating modes respectively. The theoretical model of ranging accuracy is simulated and verified by experiment. In the simulation, the relationship between the three main errors and the key parameters of the system is discussed by simulating the process of laser emission, receiving and signal acquisition of the detector. The principle validation system of fringe array detection lidar with selective control of noise sources is presented, and the effect of fringe width on ranging accuracy is discussed emphatically. The experimental results show that the error caused by multiplicative noise increases linearly with the increase of fringe width and the error caused by additive noise does not with the fringe width under constant transmitting power mode. The error caused by multiplicative noise is directly proportional to the square root of the fringe width and the error caused by additive noise is inversely proportional to the fringe width in near saturation imaging mode. Distance precision optimization methods: (1) The parameter optimization method based on the optimal fringe width is studied, and the theoretical expression and numerical results of the optimal fringe width under different operating modes are given. After parameter optimization, the system can reconstruct the range profile of 1.7 km long-range target at a distance gate width of 173 m, and reduce the ranging root mean square error to 0.19 M. (2) A new method is proposed in the range extraction process of fringe image. Based on the simulation results, the influence of threshold setting on ranging accuracy under different fringe widths and noise intensities is discussed, and the empirical formula of the optimal threshold is established, and the interference of strong background noise on range profile in outfield mapping is suppressed by the optimal threshold method. (3) The optimal scheme of time slot width is discussed. The experimental results show that higher ranging accuracy can be achieved by reducing the time slot width while the width of the distance gate is enough to cover the depth of field of the target to be measured. By introducing Gaussian weighting factor, this algorithm can effectively suppress the boundary blur effect caused by fringe dispersion in the adjacent channel, and realize the accurate recognition of 1.4 km target feature details. When the fringe width is 4.4ns, the RMS error of the system can be reduced to 0.15m after 15 iterations. The range precision of the mapping result is better than the minimum range resolution of the system, and the super-resolution imaging of the fringe array detection lidar is realized. Finally, a set of three-dimensional mapping system for the ground based on the aircraft platform is established. According to the optimization method of ranging accuracy and the results of echo intensity calculation, the selection of operating mode and the selection of key parameters of the system at different flight altitudes are discussed. The coverage of the laser footprint to the surveying and mapping area under the scanning system is analyzed by combining with the digital elevation map simulation. The ranging deviation caused by the non-uniformity of the scanning electric field of the detector and the horizontal positioning deviation caused by the non-linearity of the scanning trajectory of the laser footprint are calibrated and corrected. The gate width is 173m and the data rate is 500kHz. At the flight altitudes of 3000m and 5800m, the RMS error of ranging can reach 0.11M and 0.16m, respectively. The detection time for surveying and mapping the plain area of 30km2 is 2 minutes and 13 seconds, which is nearly 10 times more efficient than the traditional broom scanning system.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN958.98
【相似文献】
相关期刊论文 前10条
1 洪名家;±1米激光测距机测距精度的分析[J];激光;1978年Z1期
2 陈早维;张涛;王健;;提高激光测距精度方法的研究[J];大众科技;2013年11期
3 谢俊;张萍;薛乐群;;距离及脉宽变化对定压比较测距精度的影响[J];江苏技术师范学院学报;2013年04期
4 乔强;提高测距精度的方法研究[J];无线电工程;1997年05期
5 罗韩君;元秀华;;光子脉冲外差探测系统的测距精度[J];中国激光;2013年12期
6 罗韩君;周仁龙;张禹涛;;光子雷达探测性能与测距精度的理论研究[J];激光技术;2014年03期
7 ;关于脉冲激光测距精度的初步分析[J];激光与红外;1977年09期
8 李建华;李田科;于仕财;康健;;提高雷达测距精度的实用方法探讨[J];海军航空工程学院学报;2012年03期
9 胡以华,薛永祺,何永清;机载扫描激光测距精度的研究[J];量子电子学报;1999年03期
10 刘嘉兴;;深空测距信号短稳对测距精度的影响[J];空间电子技术;2012年02期
相关会议论文 前3条
1 王陆潇;黄智刚;赵昀;李锐;;GPS用户测距精度的表示变化及影响分析[A];第二届中国卫星导航学术年会电子文集[C];2011年
2 郜键;孙剑峰;魏靖松;王骐;;基于条纹管激光成像雷达水下目标探测研究[A];鲁豫赣黑苏五省光学(激光)学会2011学术年会论文摘要集[C];2011年
3 蔡明生;郭建华;谢明钢;郑春晓;;碲锌镉阵列探测器最新结果[A];第二十五届全国空间探测学术研讨会摘要集[C];2012年
相关博士学位论文 前8条
1 叶光超;条纹阵列探测激光雷达测距精度与三维测绘技术研究[D];哈尔滨工业大学;2016年
2 刘施菲;激光雷达辅助的惯性导航组合系统技术研究[D];哈尔滨工程大学;2015年
3 王强;基于激光雷达数据与多角度遥感模型的森林参数反演研究[D];哈尔滨工业大学;2017年
4 徐璐;Gm-APD脉冲累积激光雷达探测性能提高的研究[D];哈尔滨工业大学;2017年
5 吕丹;基于点法向量姿态估计的激光雷达距离像目标识别算法研究[D];哈尔滨工业大学;2016年
6 张敬金;大物面X射线条纹管电子光学设计与实验研究[D];深圳大学;2017年
7 郜键;条纹管激光成像雷达海面小尺度波探测探潜技术研究[D];哈尔滨工业大学;2014年
8 徐帆;阵列调制激光三维成像雷达编解码及信号处理技术研究与实现[D];南京大学;2016年
相关硕士学位论文 前10条
1 林辉;基于车载多激光雷达的地图构建与障碍物检测[D];浙江大学;2017年
2 杨凡;基于无人机激光雷达和高光谱的冬小麦生物量反演研究[D];西安科技大学;2017年
3 陈昊;基于光纤延迟线的激光测距仪测距精度检测系统[D];南京理工大学;2016年
4 郭美灵;激光雷达测距的峰值估计与测距精度分析[D];南京理工大学;2013年
5 赵代民;多狭缝条纹管激光成像系统数据处理技术研究[D];哈尔滨工业大学;2008年
6 卢静怡;三维激光成像系统中高精度测距技术的研究[D];北京交通大学;2013年
7 王佳;基于单目视频路径与激光雷达的移动机器人导航方法研究[D];郑州大学;2017年
8 梁小雪;条纹管激光雷达偏振成像实验研究[D];哈尔滨工业大学;2010年
9 魏靖松;条纹管激光三维成像技术研究[D];哈尔滨工业大学;2007年
10 秦学珍;基于小波分析的激光雷达信号消噪和气溶胶粒子谱反演算法研究[D];北方民族大学;2017年
,本文编号:2216359
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2216359.html