基于序列深度学习的视频分析:建模表达与应用
[Abstract]:In recent years, video data has been explosively growing. Such a large number of video data in the storage, identification, sharing, editing, generation and other processes need accurate video semantic analysis technology. At present, video semantic analysis based on depth learning can be divided into two steps: 1) extracting the visual feature expression of each frame by convolution neural network; 2) learning the feature sequence by using long-short term recurrent neural network (LSTM) and tabulating it. On the basis of a comprehensive survey and summary of existing video semantic analysis techniques, the classical problems in video semantic classification and video semantic description task depth learning models are fully studied. A continuous Dropout algorithm is proposed, which is a convolution neural network whose parameters are robust to image transformation and a convolution neural network whose structure is robust to image transformation. To solve this problem, an unsupervised layer-by-layer greedy learning approach is proposed to improve the model performance and training efficiency. Furthermore, in view of the limitations of the existing one-way mapping framework from video sequences to word sequences, a novel multi-way sequence learning algorithm based on latent semantic representation is proposed creatively. The main work and innovations of this paper are summarized as follows: Continuous Dropout Dropout has been proved to be an effective algorithm for training deep convolutional neural networks. Its main idea is that by shielding some atoms in a large-scale convolutional neural network, it can train more than one atom at a time. Enlightened by this phenomenon, we extend the traditional binary Dropout to continuous Dropout. On the one hand, continuous Dropout is closer to the activation of neurons in the human brain than traditional binary Dropout. On the other hand, we show that continuous Dropout has the property of avoiding the common adaptation of feature detectors. Results. The convolution neural network (CNN) with robust parameters has achieved the best results in many visual tasks. At present, almost all visual information is processed by convolution neural network. However, the current CNN model still shows poor robustness in image spatial transformation. The layered and parametric convolution neural networks based on the combination of convolution (matrix multiplication and nonlinear activation) and pool operation should be able to learn robust mapping from transformed input images to transformed invariant representations. On the contrary, each convolution kernel will learn invariant features in a variety of combinations of transformations for its input feature graph. Thus, we do not need to add any additional supervisory information to the optimization process and training image or modify the input image. CNN learning by machine transformation is more insensitive to the transformation of the input image. In small-scale image recognition, large-scale image recognition and image retrieval, the performance of the existing convolution neural network is improved. The robust convolution neural network convolution neural network (CNN) has shown the best performance in many visual recognition tasks. However, the combination of convolution and pooling operations shows little invariance to the local location of meaningful targets in the input. Sometimes, some networks use data augmentation to train the network to encode this invariance into network parameters, but this limits the ability of the model to learn the target content. In order to make the model concentrate on learning the object it describes, and not be affected by its position, we propose sorting the local blocks in the feature response graph, and then input them in. In the next layer, when block reordering combines convolution and pool operations, we obtain a consistent representation of targets in input images at different locations. We demonstrate that the proposed block reordering module can improve the performance of CNN for many benchmark tasks, including MNIST digital recognition, large-scale image recognition and image retrieval. Recent developments in sequential deep recurrent neural networks learning recurrent neural networks (RNNs), especially the long-and short-term memory networks (LSTMs) commonly used in video analysis, have shown their potential for modeling sequential data, especially in the areas of computer vision and natural language processing. Compared with the shallow network, the effect is not improved and the convergence speed is slow. This difficulty arises from the LSTM initialization method, in which the gradient-based optimization usually converges to the worse local solution. In this paper, we propose a novel encoder-decoder-based learning framework to initialize multi-layer LSTM in a greedy layer-by-layer training manner, in which each new LSTM layer is trained to retain the main information from the upper layer. Practicing multi-layer LSTM outperforms randomly initialized LSTM in terms of regression (additive problem), handwritten numeral recognition (MNIST), video classification (UCF-101) and machine translation (WMT'14). In addition, using greedy layer-by-layer training method, the convergence speed of multi-layer LSTM is increased by four times. Sequence-to-sequence learning sequence learning is a popular area of in-depth learning, such as video caption and speech recognition. Existing methods model the learning process by first encoding the input sequence into a fixed-size vector and then decoding the target sequence from the vector. Although simple and intuitive, this mapping model is task-dependent. In this paper, we propose a star-like framework for generic and flexible sequence-to-sequence learning in which different types of media content (peripheral nodes) can be encoded into shared latent representations (SLRs), or central nodes. The media-invariant properties of SLR can be viewed as high-level regularization of intermediate vectors, forcing it not only to capture implicit representations within each single medium, such as automatic encoders, but also to transform as a mapping model. In addition, the SLR model is content-specific. Our SLR model was validated on YouTube2Text and MSR-VTT datasets to achieve significant results for video-to-statement tasks. Upgrade, and first achieve sentence to video results.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 杨晓帅 ,付玫;神经网络技术让管理更轻松[J];软件世界;2000年11期
2 云中客;新的神经网络来自于仿生学[J];物理;2001年10期
3 唐春明,高协平;进化神经网络的研究进展[J];系统工程与电子技术;2001年10期
4 李智;一种基于神经网络的煤炭调运优化方法[J];长沙铁道学院学报;2003年02期
5 程科,王士同,杨静宇;新型模糊形态神经网络及其应用研究[J];计算机工程与应用;2004年21期
6 王凡,孟立凡;关于使用神经网络推定操作者疲劳的研究[J];人类工效学;2004年03期
7 周丽晖;从统计角度看神经网络[J];统计教育;2005年06期
8 赵奇 ,刘开第 ,庞彦军;灰色补偿神经网络及其应用研究[J];微计算机信息;2005年14期
9 袁婷;;神经网络在股票市场预测中的应用[J];软件导刊;2006年05期
10 尚晋;杨有;;从神经网络的过去谈科学发展观[J];重庆三峡学院学报;2006年03期
相关会议论文 前10条
1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年
2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年
3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年
9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年
相关重要报纸文章 前10条
1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年
2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年
3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年
4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年
5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年
6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年
7 健康时报特约记者 张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年
8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年
9 ;神经网络和模糊逻辑[N];世界金属导报;2002年
10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年
相关博士学位论文 前10条
1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年
2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年
3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年
4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年
5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年
6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年
7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年
8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年
9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年
10 陈辉;多维超精密定位系统建模与控制关键技术研究[D];东南大学;2015年
相关硕士学位论文 前10条
1 章颖;混合不确定性模块化神经网络与高校效益预测的研究[D];华南理工大学;2015年
2 贾文静;基于改进型神经网络的风力发电系统预测及控制研究[D];燕山大学;2015年
3 李慧芳;基于忆阻器的涡卷混沌系统及其电路仿真[D];西南大学;2015年
4 陈彦至;神经网络降维算法研究与应用[D];华南理工大学;2015年
5 董哲康;基于忆阻器的组合电路及神经网络研究[D];西南大学;2015年
6 武创举;基于神经网络的遥感图像分类研究[D];昆明理工大学;2015年
7 李志杰;基于神经网络的上证指数预测研究[D];华南理工大学;2015年
8 陈少吉;基于神经网络血压预测研究与系统实现[D];华南理工大学;2015年
9 张韬;几类时滞神经网络稳定性分析[D];渤海大学;2015年
10 邵雪莹;几类时滞不确定神经网络的稳定性分析[D];渤海大学;2015年
,本文编号:2217109
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2217109.html