机载SAR快速后向投影成像算法研究
[Abstract]:Synthetic Aperture Radar (SAR) imaging technology has the characteristics of all-weather, all-time, long-range, high-resolution, wide-area observation, which can effectively improve the radar information acquisition capability. It is widely used in civil areas such as land monitoring, ocean observation, sea ice monitoring and landform changes, as well as in the battlefield reconnaissance, military trend monitoring and other military areas. With the development of SAR technology, SAR is moving towards the direction of more flexible beam pointing, higher resolution and larger scene coverage, so it is important to obtain the surface information accurately. At the same time, each mode of operation can derive two geometric configurations: forward-sidelook and squint. Under different working modes and geometric configurations, the data acquisition mode and echo signal form are quite different, so it is necessary to study new imaging algorithms to meet the needs of different working modes. The main work of this paper is as follows: Chapter 2 is the basic theory of this paper, and introduces the current situation of the research. Several typical SAR imaging algorithms are discussed, and the imaging principle, key techniques, advantages and disadvantages of each algorithm are discussed. According to the characteristics of wavenumber support region, two resampling methods for strabismus spotlight SAR polar coordinate processing, namely LOSPI and SSPI, are introduced in the second chapter. It should be pointed out that PFA is not only tenacious, but also widely used in high resolution spotlight SAR, CSAR and video SAR. The imaging characteristics of range-Doppler focusing and LOSPI provide a reference for the self-focusing processing based on fast time-domain algorithm in Chapter 3. FBP algorithm and FFBP algorithm are used to discuss the dependence of image quality on the real APC position and terrain fluctuation. In practice, most motion errors can be corrected according to the platform motion information recorded by GPS/INS. Because of the influence of image focusing, it is necessary to develop a fast time-domain algorithm based on image or data self-focusing processing. In chapter 3, the FFBP algorithm is improved. Firstly, LOS virtual polar coordinate grid is selected to replace the polar coordinate grid in the original FFBP algorithm. Second, the overlapping sub-aperture configuration (OSF) is constructed by using the multi-aperture structure of FFBP algorithm. OSF is the link between the sub-aperture phase error and the full-aperture phase error function, thus realizing the phase-based phase error. The FFBP algorithm uses two-dimensional interpolation to realize the recursive fusion of images. However, interpolation inevitably produces interpolation errors, resulting in the loss of image quality. To solve this problem, the fourth chapter proposes an accelerated backward projection spotlight SAR imaging algorithm based on wavenumber spectrum fusion, namely EBP algorithm. The EBP algorithm innovatively projectes the sub-aperture data back to the global polar coordinate system to ensure that all the sub-image wavenumber spectra are in the same wavenumber space. Without two-dimensional interpolation and recursive fusion, the EBP algorithm can obtain the full-aperture wavenumber spectra only by the azimuth shift of the sub-image wavenumber spectra. Formal, avoiding the side effects of two-dimensional interpolation processing, has the accuracy of the time-domain algorithm, and fast Fourier transform (FFT) and cyclic shift operation make it both efficient. Experiments show that the EBP algorithm is superior to the FFBP algorithm in image quality and operational efficiency. FFBP algorithm has achieved great success in the field of spotlight SAR, but will be used in the future. Enlightened by Chapter 4, Chapter 5 reorganizes FFBP algorithm from the perspective of wavenumber spectrum and finds out the reasons why FFBP algorithm is difficult to be directly used in strip SAR processing: first, integral aperture; second, the heavy computational burden caused by angular domain rising sampling. In the fifth chapter, the overlapping image method is proposed and the stripe SAR processing based on FFBP algorithm is realized successfully. This method does not need angle-domain up-sampling and greatly retains the advantages of FFBP algorithm in operation efficiency. It has the characteristics of first spotlight processing and then spotlight-stripe processing. Finally, the feasibility and validity of overlapped images are verified by simulation experiments and real-time data processing. So far, different imaging modes in linear aperture can be implemented by fast time-domain algorithm. The previous chapters have realized the extended application of fast time-domain algorithm in linear aperture. Chapter 6 is aimed at the sixth chapter. In order to avoid high angle-domain sampling rate, the CEBP algorithm divides the whole synthetic aperture (360 degree observation) into eight processing apertures. Each processing aperture is decomposed separately, sub-image is formed and wavenumber spectrum is fused. The processing aperture map is obtained by two-dimensional inverse Fourier transform (IFFT). Image. Eight processed aperture images are added coherently in rectangular coordinates to obtain the final focused CSAR image. CEBP algorithm inherits the advantages of EBP algorithm, which is accurate and efficient, and has the ability to provide about a quarter of the resolution.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TN957.52
【相似文献】
相关期刊论文 前10条
1 屈乐乐;黄琼;方广有;;基于压缩感知的频率步进探地雷达成像算法[J];系统工程与电子技术;2010年02期
2 刘继帮;韩松;;基于距离走动校正的星载SAR成像算法[J];电子与信息学报;2008年02期
3 朱宇涛;向家彬;;一种基于时频分析的自适应积累成像算法[J];空军雷达学院学报;2006年02期
4 孙泓波,顾红,苏卫民,刘国岁;机载合成孔径雷达成像算法研究[J];系统工程与电子技术;2001年09期
5 何劲;实时成像算法在某8mm高分辨机载SAR中的应用[J];电讯技术;2004年04期
6 雷文太;粟毅;黄春琳;;表层穿透雷达递归反向投影成像算法[J];电子学报;2005年12期
7 孙兵;周荫清;陈杰;李春升;;基于恒加速度模型的斜视SAR成像CA-ECS算法[J];电子学报;2006年09期
8 白霞;袁运能;孙进平;毛士艺;;0.1米分辨率机载SAR系统的带宽实现和成像算法研究[J];电子学报;2007年09期
9 李述为;高梅国;傅雄军;;步进频穿墙雷达成像算法[J];现代雷达;2007年12期
10 介利军;欧阳缮;杨洁;陈玉生;;一种穿墙雷达成像算法的快速实现方法[J];电路与系统学报;2011年04期
相关会议论文 前10条
1 王文远;;贝页斯层析成像算法在密度反演中的应用[A];中国工程物理研究院科技年报(2003)[C];2003年
2 邓黾;吴彦鸿;;双站合成孔径雷达ωk成像算法研究[A];全国第五届信号和智能信息处理与应用学术会议专刊(第一册)[C];2011年
3 马进;许会;;微波成像算法综述[A];科技创新与产业发展(A卷)——第七届沈阳科学学术年会暨浑南高新技术产业发展论坛文集[C];2010年
4 张云;赵昕;姜义成;;舰船目标的分数阶自相关瞬时成像算法研究[A];全国第二届信号处理与应用学术会议专刊[C];2008年
5 赵满庆;贾鑫;;一端固定的双站SAR成像算法研究[A];第三届全国嵌入式技术和信息处理联合学术会议论文集[C];2009年
6 黄晓芳;马仑;刘峥;;基于最小熵准则的弹载SAR成像算法[A];第十二届全国信号处理学术年会(CCSP-2005)论文集[C];2005年
7 刘爱芳;朱晓华;刘中;;基于分数阶Fourier变换的距离瞬时多普勒成像算法[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
8 白霞;孙进平;毛士艺;;双基地合成孔径雷达的Chirp z变换成像算法[A];第十三届全国信号处理学术年会(CCSP-2007)论文集[C];2007年
9 陈静;杨万麟;;机载双基地SAR的R-D成像算法[A];2006中国西部青年通信学术会议论文集[C];2006年
10 陈浩;吴仁彪;刘家学;韩智勇;;基于NUFFT的探地雷达偏移成像算法[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
相关博士学位论文 前10条
1 杨军;机/星载宽幅SAR成像算法研究[D];西安电子科技大学;2014年
2 李浩林;机载SAR快速后向投影成像算法研究[D];西安电子科技大学;2015年
3 刘光平;超宽带合成孔径雷达高效成像算法[D];中国人民解放军国防科学技术大学;2003年
4 任百玲;主动毫米波安检成像算法及系统研究[D];北京理工大学;2014年
5 钟华;双站合成孔径雷达成像算法研究[D];上海交通大学;2009年
6 刘玉春;双基雷达成像算法研究[D];西安电子科技大学;2013年
7 左艳军;分布式小卫星合成孔径雷达高分辨率成像算法研究[D];中国科学院研究生院(电子学研究所);2007年
8 张振华;双/多基SAR成像算法研究[D];西安电子科技大学;2007年
9 陈士超;同轨双基SAR成像算法研究[D];西安电子科技大学;2014年
10 金丽花;斜视聚束合成孔径雷达成像算法研究[D];上海交通大学;2008年
相关硕士学位论文 前10条
1 王照法;THz频段SAR成像算法研究[D];哈尔滨工业大学;2015年
2 张谦;前视双基地SAR成像算法及运动补偿研究[D];电子科技大学;2015年
3 刘志明;基于子空间优化方法的非线性电磁场逆成像算法研究[D];南昌大学;2015年
4 陈红寰;基于二维频谱的双站SAR成像技术研究[D];电子科技大学;2014年
5 殷文昭;合成孔径雷达成像算法的并行优化与实现[D];电子科技大学;2015年
6 刘婵;双基地前视SAR频域成像算法研究[D];电子科技大学;2015年
7 李志希;建筑物透视探测场景成像算法研究[D];电子科技大学;2014年
8 梅治浩;弹载SAR大斜视角成像算法研究[D];电子科技大学;2014年
9 班阳阳;基于后向投影的SAR成像算法与GPU加速研究[D];南京航空航天大学;2014年
10 张帆;弹载合成孔径雷达多模式成像技术研究[D];国防科学技术大学;2013年
,本文编号:2230657
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2230657.html