非线性系统迭代学习控制算法研究
[Abstract]:In theory, iterative learning control can completely eliminate the repeatable error of the controlled system and achieve perfect tracking of the ideal output trajectory, but there are some problems in the application process of iterative learning control algorithm. However, iterative learning control can't do anything about these non-repetitive errors. As the number of iterations increases, the non-repetitive errors will continue to superimpose. When the accumulation of non-repetitive errors reaches a certain degree, the transient response fluctuation of the controlled system will become very large, even beyond the scope of the controlled system. This phenomenon is very great. Secondly, Iterative Learning Control (ILC) algorithm needs to satisfy certain conditions to completely eliminate the repetitive error of the controlled system. For example, the initial value problem requires the initial state of the controlled system to be on the desired trajectory, and the initial error to be zero. Convergence problem. For a nonlinear controlled system, in order to ensure that the control input of the control system converges to the ideal control input, the existence of the ideal control input is always assumed in advance, and the Lipschiz continuous condition is required for the controlled system. These assumptions greatly limit the application scope of the iterative learning control algorithm. In this paper, predictive control technology and iterative learning control technology are combined to construct a new control strategy to deal with these non-repetitive errors in nonlinear systems. The main research contents and innovations are as follows: Aiming at the problem of non-repetitive error in iterative learning control for nonlinear systems which do not satisfy Lipschiz continuous conditions, a new iterative learning control scheme is constructed by using operator theory in inner product space to realize the convergence of learning control for these nonlinear systems. The strategy of combining learning control technique with predictive control technique is applied to compensate the repetitive error and non-repetitive error of the system.Because the continuous nonlinear system can be discretized,the control strategy in this paper is designed for the discrete system.Because the iterative learning control law is designed offline,the prediction is mainly considered in this paper. Suppose that the controlled system has several sampling points in each repetitive operation, and different learning control laws are implemented at each sampling point. The difference of these control laws lies in the difference of output errors, which are obtained by implementing predictive control at each sampling point. The convergence and stability of an iterative predictive control algorithm are proved. To solve the problem that the classical nonlinear iterative learning control requires the controlled system to satisfy Lipschiz continuous conditions, a new iterative learning control law, also called two-step iterative learning control, is proposed. The convergence is achieved under the condition of Lipschiz continuity, which greatly expands the application scope of iterative learning control. In iterative learning control, the output of the system needs to be measured, and the output error of the controlled system is obtained by making a difference with the ideal output to update the control input. In this paper, a predictive variable gain iterative learning control strategy is proposed to eliminate the negative effects caused by measurement errors. This method is applied to permanent magnet synchronous motor (PMSM) systems to eliminate torque ripple. Learning control strategies are proposed in finite-dimensional space, and few iterative learning control methods are proposed for infinite-dimensional space. Moreover, the proposed iterative learning control algorithm assumes that the ideal control input exists in advance, but in practice, we do not know whether the ideal control input exists. Iterative learning control method is put forward, and the method of judging the existence of ideal control input is given, which greatly reduces the subjectivity of control input and enriches and develops the theory of iterative learning control. First, the discretization model of the controlled system is obtained according to the Euler formula, then the discretization model of the tracking error is deduced. The repeatable disturbance is eliminated by the error model, the current state value is estimated by Kalman filter, the random error is eliminated by prediction, and the ideal target is completely tracked. The predictive control method has a large amount of calculation. Combining with the problem that modular multilevel converter makes the on-line computation more difficult, the optimal grouping method is deduced to solve the optimal value of the objective function in predictive control according to the mean inequality, and the optimal grouping method is extended to the multi-level optimal method to solve the optimal value problem of predictive control. It reduces the operation of predictive control online operation and improves the control performance of the system.
【学位授予单位】:华北电力大学(北京)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP13
【相似文献】
相关期刊论文 前10条
1 高红霞,阮小娥,万百五;工业过程控制系统迭代学习算法的增益确定[J];西安交通大学学报;2001年12期
2 田森平,谢胜利,谢振东;一类基于几何分析的迭代学习控制算法[J];控制与决策;2004年09期
3 张君海;石成英;林辉;;一种带角度修正的迭代学习控制算法[J];系统仿真学报;2006年S2期
4 回立川;林辉;;基于迭代学习的云控制设计研究及应用[J];计算机工程与应用;2008年09期
5 回立川;林辉;;一种新型的迭代学习控制器设计研究[J];计算机仿真;2009年03期
6 田绍宽;李书臣;翟春艳;顾妍午;;基于几何分析的改进迭代学习控制算法[J];桂林电子科技大学学报;2007年06期
7 李战明;艾文欢;陈若珠;;倒立摆的迭代学习控制方法研究[J];传感器与微系统;2008年04期
8 张丽萍;杨富文;;一类离散模糊系统的迭代学习控制算法[J];控制工程;2008年05期
9 殷红;彭珍瑞;;倒立摆的可变增益迭代学习控制算法[J];自动化与仪器仪表;2009年03期
10 徐敏;林辉;;一种新型迭代学习控制律的研究与应用[J];南昌大学学报(理科版);2009年06期
相关会议论文 前10条
1 张君海;石成英;林辉;;一种带角度修正的迭代学习控制算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年
2 李政;;一类二阶D型迭代学习控制算法的收敛性[A];第二十四届中国控制会议论文集(上册)[C];2005年
3 路林吉;邵世煌;;一种可用于非线性动态延迟控制系统的闭环比例型一阶给定超前迭代学习控制算法[A];1997年中国控制会议论文集[C];1997年
4 路林吉;邵世煌;;一种可用于非线性动态延迟控制系统的开环比例型一阶给定超前迭代学习控制算法[A];1997中国控制与决策学术年会论文集[C];1997年
5 田森平;谢胜利;;一种新的带有遗忘因子的迭代学习控制算法[A];第二十二届中国控制会议论文集(上)[C];2003年
6 龚利;王云宽;杨雁;宋英华;;基于迭代学习算法的粉末精密配给控制系统[A];2007年中国智能自动化会议论文集[C];2007年
7 简林柯;何钺;;参考输入信号的迭代学习生成及其应用[A];1998年中国控制会议论文集[C];1998年
8 翟春艳;薛定宇;李书臣;;一种基于过程模型的适应性迭代学习控制算法[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
9 路林吉;王树青;;一种基于输出误差的离散时间动态系统迭代学习控制算法[A];1995年中国控制会议论文集(下)[C];1995年
10 谢华英;孙明轩;金奎;;有限时间收敛迭代学习控制器设计[A];第二十九届中国控制会议论文集[C];2010年
相关博士学位论文 前10条
1 丁健;若干类鲁棒迭代学习控制算法研究[D];江南大学;2015年
2 严求真;非线性不确定系统迭代学习控制方法研究[D];浙江工业大学;2015年
3 童少伟;高层建筑结构智能振动控制与优化研究[D];西南交通大学;2016年
4 李振轩;高速列车迭代学习运行控制几类问题研究[D];北京交通大学;2016年
5 许慧敏;非线性系统迭代学习控制算法研究[D];华北电力大学(北京);2016年
6 许光伟;基于优化策略的迭代学习控制算法研究[D];大连理工大学;2014年
7 刘山;迭代学习控制系统设计及应用[D];浙江大学;2002年
8 孙何青;改进的迭代学习控制算法及其在列车运行控制应用中的几类问题研究[D];北京交通大学;2014年
9 郭毓;一类时变系统的自适应迭代学习辨识与控制[D];南京理工大学;2007年
10 于少娟;电液伺服力控系统的鲁棒迭代学习控制方法研究[D];太原理工大学;2012年
相关硕士学位论文 前10条
1 孙宇;基于大数据的高速列车车体振动迭代学习主动控制研究[D];西南交通大学;2015年
2 席珂;迭代学习模型预测控制的研究[D];华北电力大学;2015年
3 赵思锋;基于PWM迭代学习的SRM电流控制器研究[D];河北工业大学;2015年
4 王敏;复杂动态网的自适应迭代学习同步控制[D];西安电子科技大学;2014年
5 易芬;伺服系统的分段滤波迭代学习控制方法研究[D];浙江工业大学;2015年
6 李妮;基于二维系统的迭代学习控制算法[D];浙江工业大学;2015年
7 栗三一;基于迭代学习的桥式起重机定位与防摆控制研究[D];河南理工大学;2014年
8 陈强;自适应迭代学习控制算法及应用研究[D];重庆大学;2015年
9 易家宁;风洞马赫数的控制策略与控制方法研究[D];东北大学;2014年
10 陈磊;基于迭代学习算法的灵巧手同步协调控制[D];华中科技大学;2014年
,本文编号:2232381
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2232381.html