具柔性脊柱的四足机器人结构优化与控制

发布时间:2018-09-14 10:05
【摘要】:四足机器人具有良好的环境适应性和运动灵活性,可以广泛运用于军事、工业、生活等各个方面,成为机器人研究领域中的热点问题。论文在前人研究的基础上,设计了具有柔性脊柱的四足机器人,建立了其动力学模型,分析了bound步态下模型的被动运动特性,研究了机身长度、惯量和刚度参数对机器人运动性能和稳定性的影响,完成了结构参数优化,提出了机器人常用步态的控制方法。猎豹被认为是速度最快的四足哺乳动物,本文从仿生学角度出发,参考猎豹的骨骼构型和运动方式,开发HUST cheetah四足机器人。依照猎豹的骨骼结构特点,构建四足机器人的基本构型框架。分析在不同运动状态下猎豹的受力特性,提出四足机器人基本设计原则。仿生学研究发现动物在运功过程中,关节之间存在很大的相关性,利用主成份分析法(Principal Component Analysis)探究猎豹运动过程中各个关节间的相关性,耦合具有相关性的关节,减少了机器人主动驱动关节数量,优化机器人的机械结构。在此基础上,提出了HUST cheetah四足机器人的设计原理和整体设计方案。观察猎豹bound步态的运动特点,通过合理假设与简化,建立具柔性脊柱的四足机器人在bound步态下的动力学模型。为了减少该模型的结构参数变量、使模型更具有一般性,对模型进行了无量纲化处理。采用庞加莱映射方法研究此模型的被动动力学,利用牛顿-拉弗逊方法提出了模型不动点求解方法。分析了在不动点下模型的被动运动特性,提出了不动点稳定性的判定方法,为结构参数优化和控制研究提供理论基础。稳定性研究发现合理的结构参数是决定机器人稳定性的关键。以提高具柔性脊柱的四足机器人在不动点处的运动性能和稳定性为优化目标,提出了同一系统能量状态下不动点的搜索方法,分析在同一能量状态下机器人脊柱长度、惯量和刚度对不动点稳定性的影响,得出了腿部刚度和脊柱刚度是决定具柔性脊柱的四足机器人稳定性的关键因素,进而完成了四足机器人长度、惯量和刚度优化。在此基础上进一步分析了非对称前后脊柱参数对机器人运动性能和稳定性的影响,研究发现合理降低前后脊柱质量比既保证了稳定性又提升了机器人的运动性能,据此完成了非对称前后脊柱参数的优化。此外刚性脊柱模型和柔性脊柱模型的对比分析发现,柔性脊柱能够提高四足机器人的运动性能。基于被动动力学研究结论可知,在理想情况下机器人能够在无需借助外界驱动的情况下实现自稳定的周期运动。然而由于摩擦、外界干扰等因素的影响,机器人很难持续稳定运动。为使HUST cheetah机器人能够按照被动运动方式实现持续稳定运动,本文构建了基于机器人被动动力学的分层控制器。在高层控制器中,利用被动动力学,提出了基于目标状态的关节控制方法。在底层控制器中,提出了基于位置和速度闭环的PD力矩控制,并通过仿真试验验证了控制算法的有效性。此外,猎豹常用步态除了适合高速运动的bound步态外,还有适合低速运动的tort步态,本文还提出了基于弹簧倒立摆模型(SLIP)的HUST cheetah机器人tort步态控制方法。在上述理论分析与研究基础上,开发了具有柔性脊柱的四足机器人HUST cheetah,完成了步态运动和理论验证试验,证明了HUST cheetah机器人高速稳定运动能力。
[Abstract]:Quadruped robot has good environmental adaptability and motion flexibility, and can be widely used in military, industrial, life and other aspects. It has become a hot issue in the field of robot research. Based on previous studies, a quadruped robot with flexible spine is designed, its dynamic model is established, and its bound gait is analyzed. The passive motion characteristics of the model are studied. The effects of the fuselage length, inertia and stiffness parameters on the motion performance and stability of the robot are studied. The structure parameters are optimized and the gait control methods are proposed. The cheetah is considered to be the fastest quadruped mammal. From the bionics point of view, the cheetah's skeleton is referred to. HUST cheetah quadruped robot is developed in this paper. According to the characteristics of the cheetah's skeleton structure, the basic configuration frame of the quadruped robot is constructed. Principal Component Analysis (PCA) is used to explore the correlation between the joints in the process of cheetah movement, coupling the related joints, reducing the number of active driving joints and optimizing the mechanical structure of the robot. On this basis, the design principle and the whole of HUST cheetah quadruped robot are proposed. A dynamic model of a quadruped robot with a flexible spine under bound gait is established by observing the kinematic characteristics of the leopard bound gait. In order to reduce the structural parameters of the model and make the model more general, the model is dimensionless. The Poincare mapping method is used to study this problem. The passive dynamics of the model is solved by Newton-Raphson method. The passive motion characteristics of the model at the fixed point are analyzed. A method for determining the stability of the fixed point is proposed. It provides a theoretical basis for the optimization and control of structural parameters. To improve the motion performance and stability of a quadruped robot with a flexible spine at a fixed point, a method of searching fixed points under the same system energy state is proposed. The influence of the length, inertia and stiffness of the robot spine on the stability of the fixed point under the same energy state is analyzed, and the leg stiffness is obtained. Degree and spinal stiffness are the key factors to determine the stability of a quadruped robot with a flexible spine, and then the length, inertia and stiffness of the quadruped robot are optimized. The stability of the robot is guaranteed and the motion performance of the robot is improved. The optimization of the parameters of the asymmetrical front and rear spines is accomplished. In addition, the comparison between the rigid spine model and the flexible spine model shows that the flexible spine can improve the motion performance of the quadruped robot. It can realize self-stable periodic motion without external drive. However, it is difficult for the robot to move steadily because of friction and external disturbance. In order to make the HUST cheetah robot move steadily in passive mode, a hierarchical control based on passive dynamics is proposed. In the high-level controller, a joint control method based on target state is proposed by using passive dynamics. In the low-level controller, a closed-loop PD torque control based on position and speed is proposed, and the effectiveness of the control algorithm is verified by simulation experiments. Besides the bound gait which is suitable for high-speed movement, the common gait of cheetah is also presented. A tort gait control method based on the spring inverted pendulum model (SLIP) is proposed for the tort gait control of the HUST cheetah robot. On the basis of the above theoretical analysis and research, a quadruped robot with a flexible spine, HUST cheetah, is developed. The gait motion and theoretical validation tests are completed, and the HUST cheetah machine is proved. The robot has high speed and stable movement ability.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP242

【相似文献】

相关期刊论文 前10条

1 段齐骏;机器人工作空间配置的可靠性规划[J];机械科学与技术;2004年02期

2 钟勇,朱建新;一种新的机器人工作空间求解方法[J];机床与液压;2004年04期

3 张培艳,吕恬生,宋立博;排球机器人动作规划方法研究[J];机床与液压;2004年06期

4 曹毅,王树新,李群智;基于随机概率的机器人工作空间及其面积求解[J];制造业自动化;2005年02期

5 胡磊;刘文勇;王豫;栾胜;;骨科机器人空间设计方法研究[J];机器人;2006年04期

6 石磊;;松协调下双臂机器人的协作工作空间计算[J];微计算机信息;2007年24期

7 许卫斌;平雪良;应再恩;杜永忠;李正洋;;6R型串联机器人工作空间快速求解方法[J];机械设计;2013年06期

8 王兴海,周迢;机器人工作空间的数值计算[J];机器人;1988年01期

9 郭明,周国斌;多关节机器人工作空间的分析与评价方法[J];机器人;1988年04期

10 陈国欣,李诚琚;计算机绘图在机器人工作空间分析中的应用[J];机器人;1988年05期

相关会议论文 前6条

1 范守文;徐礼钜;;机器人工作空间分析的解析法[A];第十四届全国机构学学术研讨会暨第二届海峡两岸机构学学术交流会论文集[C];2004年

2 殷子强;张广军;袁新;赵慧慧;吴林;;人机交互式机器人弧焊再制造系统设计[A];第十六次全国焊接学术会议论文摘要集[C];2011年

3 范波涛;闫成新;;喷浆机器人灵巧度分析[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年

4 海丹;刘玉鹏;郑志强;;四轮全向机器人的设计与控制方法[A];2005中国机器人大赛论文集[C];2005年

5 高理富;宋宁;;Puma控制器改造中的控制算法探究[A];2003年中国智能自动化会议论文集(上册)[C];2003年

6 徐晓;翟敬梅;谢存禧;;机器人柔性装配单元的设计[A];第十届粤港机电工程技术与应用研讨会暨梁天培教授纪念会文集[C];2008年

相关博士学位论文 前10条

1 蒋峻;具有力感知的腹腔镜微创手术从动机器人的研究[D];上海交通大学;2014年

2 管小清;冗余度涂胶机器人关键技术研究[D];北京理工大学;2015年

3 杜海艳;MRI环境下乳腺介入机器人穿刺路径规划研究[D];哈尔滨理工大学;2015年

4 李腾飞;笼养蛋鸡健康行为监测机器人系统研究[D];中国农业大学;2016年

5 李睿;机器人柔性制造系统的在线测量与控制补偿技术[D];天津大学;2014年

6 赵燕鹏;长骨骨折精准手术机器人系统研究[D];中国人民解放军医学院;2016年

7 黄彪;枇杷剪枝机器人关键技术的研究[D];华南理工大学;2016年

8 陈健;面向动态性能的工业机器人控制技术研究[D];哈尔滨工业大学;2015年

9 杜亮;六自由度工业机器人定位误差参数辨识及补偿方法的研究[D];华南理工大学;2016年

10 韩金华;护士助手机器人总体方案及其关键技术研究[D];哈尔滨工程大学;2009年

相关硕士学位论文 前10条

1 郑为凑;轻工包装机器人专用运动控制系统研究[D];江南大学;2015年

2 齐龙;基于视觉的6自由度机器人焊接控制研究[D];燕山大学;2015年

3 彭真;典型工况下四自由度高速重载机器人起动特性的研究[D];燕山大学;2015年

4 赵登步;基于机器视觉的SCARA机器人快速定位控制系统的研究与开发[D];江南大学;2015年

5 邱焕能;机器人操作臂控制驱动系统研究[D];华南理工大学;2015年

6 王权;基于大臂并联的四自由度机器人结构设计与研究[D];郑州轻工业学院;2015年

7 翟美新;基于李群李代数的机器人运动特性分析与研究[D];南京理工大学;2015年

8 BUI HUU TOAN;智能服务机器人控制系统研究与实现[D];南京理工大学;2015年

9 高君涛;工业码垛机器人的轨迹优化及结构拓扑优化设计[D];西安建筑科技大学;2015年

10 姜柏森;一种变几何桁架机器人运动学建模及轨迹规划算法[D];上海交通大学;2015年



本文编号:2242400

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2242400.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户705f1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com