纳米级SRAM单粒子翻转效应及其诱导的软错误研究
[Abstract]:With the increasing of space science and technology in our country in recent years, the high-reliability demand for application of microprocessor to radiation environment becomes more and more urgent. SRAM, as a core storage component of the microprocessor, occupies a larger chip area and is extremely sensitive to the single particle inversion effect (SEU) initiated by irradiation. It is necessary to carry out SEU and soft error research of SRAM after the SEU induced soft error in SRAM. after the process size enters the nanometer level, the charge sharing between the integrated circuit devices becomes more serious, so that the SEU sensitivity of the nano-scale SRAM cells is changed, and a plurality of reinforcing methods are caused to fail. At the same time, a new single particle inversion recovery effect (SEUR) is also generated in small size SRAM cells, which can reduce the SEU sensitivity of SRAM by enhancing SEUR. The 3D SRAM based on the three-dimensional stacking technology stacks the traditional SRAM in the vertical direction, and the vertical interconnection is performed using the TSVs, so that a plurality of bottlenecks encountered by the conventional SRAM are solved, However, the 3D SRAM in the irradiation environment will still suffer from the SEU hazard. The 3D SRAM stack structure makes SEU generate and propagate more complex, and then increases the difficulty of soft error analysis of 3D SRAM. meanwhile, the TSV used by the three-dimensional stacking technology can collide with the incident single particle, and further influence the soft error characteristics of the 3D SRAM. In view of the new features of SEU and soft error in nanoscale SRAM cells and 3D SRAM, the relevant research has been carried out and the following achievements have been obtained: (1) The effect of charge sharing on the SEU sensitive characteristics of nanoscale SRAM cells is studied by using 3D TCAD system-wide simulation. Based on the 40nm commercial SRAM cell layout, 3D TCAD device model was built for all transistors in the cell. The SEU sensitive area is then simulated under/ without electrical connection and under different LET conditions, respectively. The simulation results show that charge sharing can reduce the SEU sensitive area of PMOS by 37. 5%, and reduce the SEU sensitive area of NMOS by 65.1%. By analyzing the difference of SEU sensitive area under different conditions, it is found that SEUR based on charge sharing can reduce the SEU sensitivity of PMOS, while on-state PMOS reduces the SEU sensitive area of NMOS by helping to absorb the deposited charge and generate compensation current. In addition, the study shows that NMOS is more sensitive to NMOS than PMOS in SRAM cells. (2) the SEUR effect between the off-state PMOS and the ON-state PMOS and the OFF-state PMOS and the ON-state NMOS are researched in the SRAM cell respectively, and the method for enhancing SEUR is also discussed. Based on the TCAD device/ circuit hybrid simulation, it is found that the generation of SEUR between the off-state PMOS and the ON-state PMOS depends not only on charge sharing, but also the charge collection from the stage device is stronger than that of the main-stage device. Two layouts of DSD and DPI are proposed to enhance the SEUR between two PMOS transistors. Compared with the traditional layout in the vertical incident simulation, the DSD and DPI layout can reduce the SEU sensitive area of 4.26% and 31. 56%, respectively. Only DPI layout can greatly increase the generation probability of SEUR in oblique incidence simulation. This paper also studies the new SEUR of delayed charge collection triggered by charge-collection and open-state NMOS of off-state PMOS. This SEUR is affected by the PMOS and is greatly influenced by the NMOS, so that the SEUR can be enhanced by reducing the PMOS and NMOS spacing in the same inverter, and the width saturation value of the induced SET is equal to the sum of the SEU generation time and the SRAM cell feedback delay. (3) Using the SRIM and Geant4 tools based on Monte Carlo method to study the effect of 3D SRAM stack structure on soft error characteristics. Using the SRIM tool to analyze the range of heavy ions in the three-dimensional stacked structure, the simulation results show that the heavy ion energy can pass through the model of the six-layer die stack after the heavy ion energy is greater than 22MeV/ u, thus it can be seen that each layer in the 3D SRAM may produce soft errors. By using Geant4 simulation to obtain the deposition charge in the sensitive layers of each layer die in the complex three-dimensional stacked structure model, the analysis shows that under the condition of low energy heavy ion bombardment, the soft error characteristics of each layer die are greatly different, but under the condition of high energy heavy ion bombardment, the difference can disappear, and the underlying die is more susceptible to a more severe mcu. It is also found that TSVs have a blocking effect on incident heavy ions, and TSV can reduce the inverted cross section of the surrounding sensitive cells. and (4) constructing a 3D SRAM soft error analysis platform, and analyzing the soft error characteristics of the 3D SRAM. Based on the established SET, SEU simulation method and mature tool, the 3D SRAM soft error analysis platform is established, which can quickly and accurately analyze and evaluate the soft error of 3D SRAM. Based on this platform, soft error analysis of 2D SRAM, word line division 3D SRAM and bit line division 3D SRAM were carried out. The results show that the flip section of the three SRAM is almost the same in the vertical bombardment static test, but the inverted cross section of the 3D SRAM is larger than 2D SRAM in the random incident angle simulation; the word line division 3D SRAM in the static test will produce more serious MBU, Therefore, the bit line division 3D SRAM is more suitable for application in the irradiation environment; the combinational logic circuits of the three SRAM in the dynamic test cause serious MBU; due to the small number of sensitive units around the TSV, the TSV can only reduce the inverted cross section of about 3%.
【学位授予单位】:国防科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP333
【相似文献】
相关期刊论文 前10条
1 吴珍妮;梁华国;黄正峰;陈秀美;曹源;;一种针对软错误的流水线电路加固方案[J];武汉大学学报(理学版);2010年02期
2 朱丹;李暾;李思昆;;形式化等价性检查指导的软错误敏感点筛选[J];计算机辅助设计与图形学学报;2011年03期
3 徐建军;谭庆平;熊磊;叶俊;;一种针对软错误的程序可靠性定量分析方法[J];电子学报;2011年03期
4 熊磊;谭庆平;;基于软错误的动态程序可靠性分析和评估[J];小型微型计算机系统;2011年11期
5 梁华国;黄正峰;王伟;詹文法;;一种双模互锁的容软错误静态锁存器[J];宇航学报;2009年05期
6 龚锐;戴葵;王志英;;片上多核处理器容软错误执行模型[J];计算机学报;2008年11期
7 孙岩;王永文;张民选;;微处理器体系结构级软错误易感性评估[J];计算机工程与科学;2010年11期
8 成玉;马安国;张承义;张民选;;微体系结构软错误易感性阶段特性研究[J];电子科技大学学报;2012年02期
9 张民选;孙岩;宋超;;纳米级集成电路的软错误问题及其对策[J];上海交通大学学报;2013年01期
10 龚锐;戴葵;王志英;;基于现场保存与恢复的双核冗余执行模型[J];计算机工程与科学;2009年08期
相关会议论文 前7条
1 吴珍妮;梁华国;黄正峰;王俊;陈秀美;曹源;;容软错误的电路选择性加固技术[A];第六届中国测试学术会议论文集[C];2010年
2 熊荫乔;谭庆平;徐建军;;基于软件标签的软错误校验和恢复技术[A];中国通信学会第六届学术年会论文集(上)[C];2009年
3 成玉;张承义;张民选;;微体系结构的软错误易感性评估及其阶段特性研究[A];第十五届计算机工程与工艺年会暨第一届微处理器技术论坛论文集(B辑)[C];2011年
4 金作霖;张民选;孙岩;石文强;;栅氧退化效应下纳米级SRAM单元临界电荷分析[A];第十五届计算机工程与工艺年会暨第一届微处理器技术论坛论文集(B辑)[C];2011年
5 郭御风;郭诵忻;龚锐;邓宇;张明;;一种面向多核处理器I/O系统软错误容错方法[A];第十五届计算机工程与工艺年会暨第一届微处理器技术论坛论文集(B辑)[C];2011年
6 周彬;霍明学;肖立伊;;单粒子多脉冲的软错误敏感性分析方法[A];第十六届全国核电子学与核探测技术学术年会论文集(上册)[C];2012年
7 梁丽波;梁华国;黄正峰;;基于功能复用的增强型扫描结构ESFF-SEAD[A];2011中国仪器仪表与测控技术大会论文集[C];2011年
相关博士学位论文 前10条
1 焦佳佳;处理器中分析模型驱动的高效软错误量化方法研究[D];上海交通大学;2014年
2 周婉婷;辐照环境中通信数字集成电路软错误预测建模研究[D];电子科技大学;2014年
3 闫爱斌;纳米集成电路软错误评估方法研究[D];合肥工业大学;2015年
4 唐柳;微处理器软错误脆弱性建模及缓解技术研究[D];北京工业大学;2016年
5 杜延康;纳米CMOS组合电路单粒子诱导的软错误研究[D];国防科学技术大学;2015年
6 李鹏;纳米级SRAM单粒子翻转效应及其诱导的软错误研究[D];国防科学技术大学;2016年
7 成玉;高性能微处理器动态容软错误设计关键技术研究[D];国防科学技术大学;2012年
8 丁潜;集成电路软错误问题研究[D];清华大学;2009年
9 绳伟光;数字集成电路软错误敏感性分析与可靠性优化技术研究[D];哈尔滨工业大学;2009年
10 黄正峰;数字电路软错误防护方法研究[D];合肥工业大学;2009年
相关硕士学位论文 前10条
1 徐东超;面向SystemC的软错误敏感度分析方法[D];上海交通大学;2015年
2 靳丽娜;基于SET传播特性的软错误率研究[D];电子科技大学;2015年
3 潘阿成;一种低功耗抗辐射的TCAM系统设计[D];大连理工大学;2015年
4 彭小飞;纳米工艺下集成电路的容软错误技术研究[D];合肥工业大学;2015年
5 张丽娜;集成电路的容软错误技术研究[D];合肥工业大学;2014年
6 陈凡;数字集成电路容忍软错误加固技术研究[D];合肥工业大学;2014年
7 兰风宇;Xilinx Virtex-7 FPGA软错误减缓技术研究[D];哈尔滨工业大学;2016年
8 袁德冉;纳米数字电路软错误率分析关键技术研究[D];合肥工业大学;2016年
9 刘思恺;单粒子软错误在电路中的传播过程研究[D];国防科学技术大学;2014年
10 徐毅;面向软错误的源代码级故障恢复技术研究[D];国防科学技术大学;2015年
,本文编号:2254298
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2254298.html