可信网络中信任评估机制若干关键技术研究

发布时间:2017-04-04 16:10

  本文关键词:可信网络中信任评估机制若干关键技术研究,由笔耕文化传播整理发布。


【摘要】:为了实现网络可控可管的目的提出了可信网络的概念。可信网络分为可信网络接入和可信网络动态评估。目前对于可信网络的接入控制已经有了如可信网络连接(Trusted Network Connect,TNC)等多种实现方式和手段,但是这些手段和方法仍有很多不足,例如TNC架构只进行身份验证和完整性检查;同时对于网络接入后的网络状态如何实现准确的动态评估也是可信网络目前的难点,这主要是由于网络状态复杂,数据量大,实时性高。如果不能解决网络接入时的安全性和动态评估时的准确性,必然会影响到网络的安全状态和用户的信息安全,因此实现一个可信的网络对于网络安全具有重要的意义,如何实现网络的可信接入和可信评估也成为近年来网络安全领域研究的热点。本学位论文提出了一种终端全程可信机制来体现网络的可信性。借鉴信任的时间性、集聚性、模糊性、粗糙性等属性对可信评估方法进行了研究,主要研究内容如下:(1)提出一种基于综合信任算法的可信接入模型。针对TNC只验证身份和完整性的缺点,提出一种基于综合信任算法的可信接入模型。该模型通过直接信任和间接信任组成综合信任,间接信任类似于信誉模型中的信誉值,是其他实体对终端的评价。这种评价往往是有一定规律或者说应该是温和变化的,因此设计了一种结合推荐值波动性与一致性的可信评估方法来计算间接信任,其中推荐值的波动性反映了个体评价的时间特性和连续性,一致性反映了群体评价的时间性和连续性。经过波动性和一致性加权间接评估也就具备了时间性和连续性,能够避免恶意节点的恶意评价行为。在计算直接信任时,首先应用层次分析法(Analytic Hierarchy Process,AHP)确定属性的静态权重,同时基于属性值的粒度划分再确定属性的动态权重,将两种权重进行加权平均得到直接信任值。汇总间接信任和直接信任得到最终的综合信任值。仿真结果表明该算法比其他加权算法抵抗恶意节点的能力更强。(2)提出一种基于规则匹配的可信网络信任评估方法。借鉴模糊分类模型的规则匹配算法,将终端的实时状态作为规则匹配的前件,也就是规则的条件属性,通过可信属性集及其值来表示,规则后件就是评估结果,也就是通过规则前件的匹配得到的结果就是终端的授权结果。分类规则由网络数据提取得到,由于通过网络数据产生的规则数量会急剧膨胀,因此需要对规则进行约简。通过对可信属性集的分析将可信网络评估系统转化为粗糙决策系统,在粗糙决策系统中,可以利用正域来约简属性集。本文在决策系统中通过最小决策风险的等价类划分策略来生成下近似集和正域划分,最后根据正域不变小和属性独立性进行属性约简。将约简后的决策规则存储到专门的数据库中,通过加权投影向量进行可信规则匹配,选择所有决策规则中最匹配的规则作为最优结果。该分类模型具有结构简单、语义解释性好的优点,实验结果也验证了算法的有效性。(3)提出一种基于属性包含度的可信规则提取算法。首先将所有的可信规则转化为布尔型规则,分析信息系统的包含度度量方法以及包含度和规则可信度的关系,在此基础上提出了基于规则支持度和可信度的规则提取算法。该算法通过计算规则前件和后件的包含关系产生新的规则,判断该规则的可信度和支持度是否超过设定的阈值,如果大于阈值则认为该规则是可信的,可以提取,否则丢弃。(4)提出一种基于多分类器集成的决策树匹配算法。由于多分类器集成算法的优势,首先通过自助抽样算法从初始可信集中生成多个可信规则集,在此基础上通过基于属性包含度的规则提取算法生成多个个体分类器,个体分类器的结果通过多叉决策树的形式来实现,多叉树每层的节点根据属性的重要度来确定。最后通过多叉树的匹配来实现可信规则的匹配。该算法易实现且时间复杂度小,而且通过多分类器集成提高了算法的准确性。实验结果验证了算法要比属性约简算法准确性更高。
【关键词】:可信网络 可信评估 规则匹配 权重 模糊集 粗糙集 包含度
【学位授予单位】:南京邮电大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TN915.0
【目录】:
  • 摘要4-6
  • Abstract6-10
  • 专用术语注释表10-11
  • 第一章 绪论11-21
  • 1.1 研究背景与意义11-12
  • 1.2 国内外研究现状12-18
  • 1.3 本文的主要工作18-21
  • 第二章 信任计算与粗糙决策系统21-35
  • 2.1 信任的概念与定义21-25
  • 2.1.1 信任的组成与特点21-23
  • 2.1.2 影响终端可信的属性23-25
  • 2.2 信任计算方法研究25-27
  • 2.2.1 信任计算模型25-26
  • 2.2.2 信任计算方法26-27
  • 2.3 粗糙决策系统的概念与定义27-32
  • 2.3.1 粗糙集在决策系统中的应用28-29
  • 2.3.2 粗糙决策系统的相关概念与特性29-30
  • 2.3.3 决策系统中属性约简算法概述30-32
  • 2.4 本章小结32-35
  • 第三章 基于综合信任的可信网络接入评估模型35-55
  • 3.1 可信网络接入架构35-37
  • 3.2 间接信任评估模型37-42
  • 3.2.1 可信群划分策略37-40
  • 3.2.2 基于波动性和一致性的推荐值权值算法40-42
  • 3.3 直接信任评估模型42-50
  • 3.3.1 基于AHP的属性权重计算43-49
  • 3.3.2 基于模糊粗糙熵的属性加权49-50
  • 3.4 综合信任计算模型50-54
  • 3.5 本章小结54-55
  • 第四章 基于最小化决策风险和规则匹配的可信评估算法55-79
  • 4.1 可信规则的存储56-59
  • 4.2 可信规则约简59-71
  • 4.2.1 基于决策风险的粗糙集正域划分59-62
  • 4.2.2 基于重要度的属性约简算法62-67
  • 4.2.3 属性约简算法效果验证67-71
  • 4.3 可信规则预处理71-75
  • 4.3.1 可信规则匹配流程71-72
  • 4.3.2 属性值模糊子集的确立72-74
  • 4.3.3 基于置信度和支持度的规则删除74-75
  • 4.4 基于加权向量投影的规则相似性测度75-78
  • 4.5 本章小结78-79
  • 第五章 基于关联规则提取和决策树匹配的可信判决模型79-95
  • 5.1 基于可信度的规则提取79-86
  • 5.1.1 信息系统的包含度度量80-81
  • 5.1.2 基于包含度的规则提取算法81-86
  • 5.2 基于自助抽样的训练集生成86-88
  • 5.3 基于决策树的规则匹配88-94
  • 5.3.1 多叉决策树的构造88-91
  • 5.3.2 决策树的匹配91-94
  • 5.4 本章小结94-95
  • 第六章 基于终端可信度的路由策略设计与验证95-109
  • 6.1 基于IPv6的流标记方法95-97
  • 6.2 基于流标记的可信路由97-100
  • 6.2.1 可信路由策略97-98
  • 6.2.2 路由协议设计98-100
  • 6.3 原型系统的设计与实现100-105
  • 6.3.1 系统框架100
  • 6.3.2 系统初始化100-103
  • 6.3.3 软件设计103-105
  • 6.4 实验结果分析105-107
  • 6.4.1 VLPPA协议的有效性105-106
  • 6.4.2 VLPPA协议的安全性106-107
  • 6.5 本章小结107-109
  • 第七章 总结与展望109-113
  • 7.1 本文的主要工作与创新109-110
  • 7.2 研究展望110-113
  • 参考文献113-123
  • 附录1 攻读博士学位期间撰写的论文123-124
  • 附录2 攻读博士学位期间申请的专利124-125
  • 附录3 攻读博士学位期间参加的科研项目125-126
  • 致谢126

【参考文献】

中国期刊全文数据库 前6条

1 马卓;马建峰;李兴华;姜奇;;可证明安全的可信网络连接协议模型[J];计算机学报;2011年09期

2 江伟;陈龙;王国胤;;用户行为异常检测在安全审计系统中的应用[J];计算机应用;2006年07期

3 马军煜;赵知劲;叶学义;;一种可信网络节点行为证据监测与管理机制[J];计算机应用研究;2011年08期

4 彭冬生;林闯;刘卫东;;一种直接评价节点诚信度的分布式信任机制[J];软件学报;2008年04期

5 刘巍伟;韩臻;沈昌祥;;基于终端行为的可信网络连接控制方案[J];通信学报;2009年11期

6 周国强;曾庆凯;;一种角色分离的信任评估模型[J];软件学报;2012年12期


  本文关键词:可信网络中信任评估机制若干关键技术研究,由笔耕文化传播整理发布。



本文编号:285817

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/285817.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0c6b0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com