非线性反馈移位寄存器_crc数字逻辑_线性反馈移位寄存器与梅森旋转算法
本文关键词:线性移位寄存器,由笔耕文化传播整理发布。
今天主要是来研究梅森旋转算法,它是用来产生伪随机数的,实际上产生伪随机数的方法有很多种,比如线性同余法,
平方取中法等等。但是这些方法产生的随机数质量往往不是很高,而今天介绍的梅森旋转算法可以产生高质量的伪随
机数,并且效率高效,弥补了传统伪随机数生成器的不足。梅森旋转算法的最长周期取自一个梅森素数,
由此命名为梅森旋转算法。常见的两种为基于32位的MT19937-32和基于64位的MT19937-64。
由于梅森旋转算法是利用线性反馈移位寄存器(LFSR)产生随机数的,所以我们先来认识线性反馈移位寄存器。
首先,移位寄存器包括两个部分
(1)级,每一级包含一个比特,比如11010110是一个8级的移位寄存器产生的
(2)反馈函数,线性反馈移位寄存器的反馈函数是线性的,非线性反馈移位寄存器的反馈函数是非线性的
一个,当然这个最大周期跟反馈函数有很大关系,线性反馈函数实
际上就是这个级的移位寄存器选取“某些位”进行异或后得到的结果,这里的“某些位”的选取很重要,得到线性反馈
函数之后,把这个移位寄存器的每次向右移动一位,把最右端的作为输出,把“某些位”的异或结果作为输入放到最左
端的那位,这样所有的输出对应一个序列,这个序列叫做M序列,是最长线性移位寄存器序列的简称。
上面“某些位”的选取问题还没有解决,那么应该选取哪些位来进行异或才能保证最长周期为,这是一个很重要
的问题。选取的“某些位”构成的序列叫做抽头序列,理论表明,要使LFSR得到最长的周期,这个抽头序列构成的多项
式加1必须是一个本原多项式,也就是说这个多项式不可约,比如。
下面以一个4位的线性反馈移位寄存器为例说明它的工作原理。
如果的值分别是1 0 0 0,反馈函数选取,那么得到如下序列
可以看出周长为15。在这一个周期里面涵盖了开区间内的所有整数,并且都是没有固定顺序出现的,有
很好的随机性。
之前说过,梅森旋转算法的周期为,那么说明它是一个19937级的线性反馈移位寄存器,实际上基于32位
的MT19937-32只需要用到32位,那么为什么要选择周长为的算法呢? 那是因为这样做随机性很好。
梅森旋转算法是基于线性反馈移位寄存器的一直进行移位旋转,,周期为一个梅森素数,果然是名副其实。
代码:
#include本文关键词:线性移位寄存器,由笔耕文化传播整理发布。
本文编号:101191
本文链接:https://www.wllwen.com/wenshubaike/shangbiaozhuanli/101191.html