因子载荷矩阵中的系数有何实际经济意义
本文关键词:因子载荷,由笔耕文化传播整理发布。
一、问题的提出
在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及 其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价 它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决 策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避免信 息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此 类问题而产生的多元统计分析方法。
近年来,这两种方法在社会经济问题研究中的应用越来越多,,其应用范围也愈加广泛。因子分析是主成分 分析的推广和发展,二者之间就势必有着许多共同之处,而 SPSS软件不能直接进行主成分分析,致使一些应用者在使用SPSS进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生 质疑。因此,有必要在运用SPSS分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。
二、主成分分析与因子分析的联系与区别
两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分) 综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。
主要区别:
1. 主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。
2. 主成分分析是将主成分表示为原观测变量的线性组合,
(4)*
可得, (5)
式(5)便是主成分系数矩阵与初始因子载荷阵之间的联系。不能简单地将初始因子载荷矩阵认为是主成分系数矩阵(特征向量矩阵),否则会造成偏差。
三、实证分析
通过实例来研究SPSS软件中的因子分析和主成分分析及二者分析结果的比较。运用两种分析方法对2005年江苏省13个主要城市的经济发展综合水平进行分析。
本文在选取指标时遵循了指标选取的基本原则,即针对性、可操作性、层次性、全面性等原则,选取了以下反映城市经济发展综合水平的9项指标: GDP(X1)亿元 、人均GDP (X2) 元 、城镇居民人均可支配收入(X3)元、农村居民纯收入(X4) 元、第三产业占GDP比重(X5)%、金融机构存款余额(X6)亿元、万人中各专业技术人员数(X7)人、科技三项和文教科卫支出(X8)亿元、实际利用 外资(X9) 亿美元。
(一) 数据来源及处理
按照上述指标体系,选取了江苏13个城市的数据,(所有数据均来源于《江苏统计年鉴(2006)》)。指标都是正指标,无需归一化,SPSS13.0将自动对原始数据进行标准差标准化处理,消除指标量纲及数量级的影响。
(二) 运用SPSS进行分析
首先,通过SPSS中的Data Reduction-Factor命令进行因子分析,本文采取主成分分析法来抽取公共因子,并依据特征值大于1来确定因子数目。
本文关键词:因子载荷,由笔耕文化传播整理发布。
本文编号:42179
本文链接:https://www.wllwen.com/wenshubaike/shangbiaozhuanli/42179.html