当前位置:主页 > 论文百科 > 农业期刊 >

复杂工业过程运行优化与反馈控制

发布时间:2017-02-23 17:35

  本文关键词:复杂工业过程运行优化与反馈控制,由笔耕文化传播整理发布。


全文: (3078 KB)   (1 KB) 
输出: BibTeX | EndNote (RIS)      

摘要 过程控制不仅使被控对象的输出尽可能好地跟踪控制器设定值, 而且要对整个工业装置的运行进行控制, 使反映产品在该装置加工过程中质量、效率与消耗等指标, 即运行指标在目标值范围内, 尽可能提高质量与效率指标, 尽可能降低消耗指标, 即实现工业过程运行优化控制. 本文在综述了已有的运行优化与控制方法的基础上, 重点介绍了复杂工业过程的数据驱动的混合智能运行优化控制和运行控制半实物仿真系统, 并以赤铁矿磨矿过程为应用研究案例, 仿真实验和工业应用结果表明所提方法的有效性, 并指出了复杂工业过程运行优化控制研究需要关注的问题.

服务

E-mail Alert

RSS

收稿日期: 2013-07-19     

基金资助:国家重点基础研究发展计划(973计划)(2009CB320601)资助

作者简介: 柴天佑 中国工程院院士, 东北大学教授, IEEE Fellow, IFAC Fellow. 1985 年获得东北大学博士学位. 主要研究方向为自适应控制, 智能解耦控制, 流程工业综台自动化理论、方法与技术.

引用本文:   

柴天佑. 复杂工业过程运行优化与反馈控制. 自动化学报, 2013, 39(11): 1744-1757.
CHAI Tian-You. Operational Optimization and Feedback Control for Complex Industrial Processes. Acta Automatica Sinica, 2013, 39(11): 1744-1757.

链接本文:  

     或     

[1] Engell S. Feedback control for optimal process operation. Journal of Process Control, 2007, 17(3): 203-219
[2] Darby M L, Nikolaou M, Jones J, Nicholson D. RTO: an overview and assessment of current practice. Journal of Process Control, 2011, 21(6): 874-884
[3] Scattolini R. Architectures for distributed and hierarchical model predictive control——a review. Journal of Process Control, 2009, 19(5): 723-731
[4] Mercangöz M, Doyle F J III. Real-time optimization of the pulp mill benchmark problem. Computers and Chemical Engineering, 2008, 32(4-5): 789-804
[5] Hasikos J, Sarimveis H, Zervas P L, Markatos N C. Operational optimization and real-time control of fuel-cell systems. Journal of Power Sources, 2009, 193(1): 258-268
[6] Jäschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization. Journal of Process Control, 2011, 21(10): 1407-1416
[7] Tatjewski P. Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control, 2008, 32(1): 71-85
[8] Adetola V, Guay M. Integration of real-time optimization and model predictive control. Journal of Process Control, 2010, 20(2): 125-133
[9] Alvarez L A, Odloak D. Robust integration of real time optimization with linear model predictive control. Computers and Chemical Engineering, 2010, 34(12): 1937-1944
[10] Wu M, Cao W H, He C Y, She J H. Integrated intelligent control of gas mixing-and-pressurization process. IEEE Transactions on Control Systems Technology, 2009, 17(1): 68-77
[11] Bischoff K B, Denn M M, Seinfeld J H, Stephanopoulos G, Chakraborty A, Peppas N, Ying J, Wei J. Advances in Chemical Engineering. vol.26. San Diego: Academic Press, 2001
[12] Skogestad S. Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5): 487-507
[13] Findeisen W, Bailey F N, Bryds M, Malinawski K, Tatjewski P, Wozniak A. Control and Coordination in Hierarchical Systems. New York: John Wiley, 1980
[14] Marlin T E, Hrymak A N. Real-time operations optimization of continuous processes. In: Proceedings of the 5th International Conference on Chemical Process Control. New York: American Institute of Chemical Engineers, 1997. 156-164
[15] Nath R, Alzein Z. On-line dynamic optimization of olefins plants. Computers & Chemical Engineering, 2000, 24(2-7): 533-538
[16] Hartmann J C M. Distinguish between scheduling and planning models. Hydrocarbon Processing, 1998, 77: 93-100
[17] Bartusiak R D. NLMPC: a platform for optimal control of feed-or product-flexible manufacturing. Assessment and Future Directions of Nonlinear Model Predictive Control Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: Springer, 2007, 358: 367-381
[18] Qin S J, Badgewell T A. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7): 733-764
[19] Li H X, Guan S P. Hybrid intelligent control strategy. Supervising a DCS-controlled batch process. IEEE Control Systems Magazine, 2001, 21(3): 36-48
[20] Wang Z J, Wu Q D, Chai T Y. Optimal-setting control for complicated industrial processes and its application study. Control Engineering Practice, 2004, 12(1): 65-74
[21] Yang C H, Gui W H, Kong L S, Wang Y L. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production. Engineering Applications of Artificial Intelligence, 2009, 22(4-5): 786-795
[22] Wu M, Xu C H, She J H, Yokoyama R. Intelligent integrated optimization and control system for lead-zinc sintering process. Control Engineering Practice, 2009, 17(2): 280-290
[23] Zhou P, Chai T Y, Sun J. Intelligence-based supervisory control for optimizing the operation of a DCS-controlled grinding system. IEEE Transactions on Control Systems Technology, 2013, 21(1): 162-175
[24] Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515 (柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)
[25] Chai T Y, Liu J X, Ding J L, Su C Y. Hybrid intelligent optimising control for high-intensity magnetic separating process of hematite ore. Measurement and Control, 2007, 40(6): 171-175
[26] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3): 264-275
[27] Yan A J, Chai T Y, Yue H. Multivariable intelligent optimizing control approach for shaft furnace roasting process. Acta Automatica Sinica, 2006, 32(4): 636-640
[28] Wu F H, Chai T Y. Soft sensing method for magnetic tube recovery ratio via fuzzy systems and neural networks. Neurocomputing, 2010, 73(13-15): 2489-2497
[29] Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743
[30] Chai T Y, Wu F H, Ding J L, Su C Y. Intelligent work-situation fault diagnosis and fault-tolerant system for the shaft-furnace roasting process. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2007, 221(16): 843-855
[31] Ding J L, Chai T Y, Wang H. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Transactions on Neural Networks, 2011, 22(3): 408-419
[32] Ding J L, Chai T Y, Wang H, Chen X K. Knowledge-based global operation of mineral processing under uncertainty. IEEE Transactions on Industry Informatics, 2012, 8(4): 849-859
[33] Chai T Y, Zhang Y J, Wang H, Su C Y, Sun J. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control. IEEE Transactions on Neural Networks, 2011, 22(12): 2154-2172
[34] Liu Q, Chai T Y, Wang H, Qin S Z J. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes. IEEE Transactions on Neural Networks, 2011, 22(12): 2284-2295
[35] Yu G, Chai T Y, Luo X C. Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing. IEEE Transactions on Evolutionary Computation, 2011, 15(4): 487-514
[36] Chai T Y, Zhao L, Qiu J B, Liu F Z, Fan J L. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Transactions on Industrial Informatics, 2013, 9(1): 417-426

[1] 代伟, 柴天佑. 数据驱动的复杂磨矿过程运行优化控制方法. 自动化学报, 2014, 40(9): 2005-2014.

[2] 柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战. 自动化学报, 2009, 35(6): 641-649.

[3] 柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515.

[4] 刘治, 王耀南. 一种高阶模糊CMAC自适应控制及其应用. 自动化学报, 2001, 27(02): 262-266.

[5] 何敏, 吕勇哉. 基于混合知识表达模型的启发式优化控制策略及其应用. 自动化学报, 1992, 18(03): 371-375.


  本文关键词:复杂工业过程运行优化与反馈控制,,由笔耕文化传播整理发布。



本文编号:245018

资料下载
论文发表

本文链接:https://www.wllwen.com/wenshubaike/xxkj/245018.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ab9ef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com