当前位置:主页 > 论文百科 > 农业期刊 >

机器人辅助针穿刺技术

发布时间:2016-02-26 09:46

全文: (1092 KB)   (0 KB) 
输出: BibTeX | EndNote (RIS)      背景资料

摘要 

机器人辅助技术一直是现代外科医学的重要研究课题. 研究机器人辅助针穿刺技术不仅有重要的理论意义,而且在临床上可以有效地提高针穿刺的操作精度和手术质量,因而在微创外科领域具有广泛的应用价值. 本文以刚性针和柔性针为贯穿线索,对已有机器人穿刺系统进行了简要介绍,并针对建模、规划、导航与控制等关键技术进行分析,,较系统地介绍了机器人辅助针穿刺技术领域的研究现状,最后阐述了该领域面临的挑战性问题及未来发展趋势.

服务

E-mail Alert

RSS

收稿日期: 2013-08-20          

基金资助:

国家自然科学基金(61273356,61273355)资助

通讯作者: 韩建达     E-mail: jdhan@sia.cn

引用本文:   

赵新刚, 杨唐文, 韩建达, 徐卫良. 机器人辅助针穿刺技术. 科学通报, 2013, 58(): 20-27.

ZHAO XinGang, YANG TangWen, HAN JianDa, XU WeiLiang. A review on the robot-assisted needle puncture technology. Chinese Science Bulletin, 2013, 58(): 20-27.

链接本文:  

:8080/CN/10.1360/972013-952      或     :8080/CN/Y2013/V58/I/20

1 Cleary K, Clifford M, Stoianovici D, et al. Technology improvements for image-guided and minimally invasive spine procedures. IEEE Trans Inf Technol Biomed, 2002, 6: 249-261

2 丑武胜, 王田苗. 面向脑外科微创手术的医疗机器人系统. 机器人技术与应用, 2003, 4: 18-21

3 Sun Y S, Wu D, Du Z, et al. Force-driven robotic drag control for freehand 3d ultrasound-guided robot-assisted percutaneous surgery. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, 2009. 1953-1956

4 Okamura A M, Simone C, O'Leary M D. Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng, 2004, 51: 1707-1716

5 Simone C, Okamura A M. Modeling of needle insertion forces for robot-assisted percutaneous therapy. In: Proceedings of IEEE International Conference on Robotics and Automation, Washington DC, 2002. 2085-2091

6 Misra S, Reed K B, Schafer B W, et al. Mechanics of flexible needles robotically steered through soft tissue. Int J Robot Res, 2010, 29: 1640-1660

7 Webster R J, Memisevic J, Okamura A M. Design considerations for robotic needle steering. In: Proceedings of International Conference on Robotics and Automation, Barcelona, 2005. 3588-3594

8 Abolhassani N, Patel R V, Ayazi F. Minimization of needle deflection in robot assisted percutaneous therapy. Int J Med Robotics Comput Assist Surg, 2007, 3: 140-148

9 Neubach Z, Shoham M. Ultrasound-guided robot for flexible needle steering. IEEE Trans Biomed Eng, 2010, 57: 799-805

10 Stoianovici D, Cleary K, Patriciu A, et al. AcuBot: A robot for radiological interventions. IEEE Trans Rob Autom, 2003, 19: 927-930

11 Bassan H S, Patel R V, Moallem M. A novel manipulator for percutaneous needle insertion: Design and experimentation. IEEE/ASME Trans Mech, 2009, 14: 746-761

12 Glozman D, Shoham M. Image-guided robotic flexible needle steering. IEEE Trans Robot, 2007, 23: 459-467

13 Majewicz A, Marra S, van Vledder M, et al. Behavior of tip-steerable needlesin ex vivo and in vivo tissue. IEEE Trans Biomed Eng, 2012, 59: 2705-2715

14 Asadian A, Patel R V, Kermani M R. A distributed model for needle-tissue friction in percutaneous interventions. In: Proceedings of International Conference on Robotics and Automation, Shanghai, 2011. 1896-1901

15 Barbe L, Bayle B, De Mathelin M, et al. Needle insertion modeling: Identifiability and limitations. Biomed Signal Proces, 2007, 2: 191-198

16 DiMaio S P, Salcudean S E. Needle insertion modeling and simulation. IEEE Trans Rob Autom, 2003, 19: 864-875

17 Nightingale K R, Soo M S, Nighting R W, et al. Investigation of real-time remote palpation imaging. In: Proceedings of SPIE Conference on Medical Imaging, 2001. 224-229

18 Ottensmeyer M P. TeMPeST 1-D: An instrument for measuring solid organ soft tissue properties. Exp Tech, 2002, 26: 48-50

19 Cotin S. Surgical simulation and training: The state of the art and need for tissue models. In: Proceedings of IEEE Workshop on Intelligent Robotics and Systems, 2003

20 DiMaio S P, Salcudean S E. Interactive simulation of needle insertion models. IEEE Trans Biomed Eng, 2005, 52: 1167-1179

21 Nienhuys H W, van der Stappen A F. A computational technique for interactive needle insertions in 3D nonlinear material. In: Proceedings of International Conference on Robotics and Automation, New Orleans, 2004. 2061-2067

22 Goksel O, Salcudean S E, DiMaio S P, et al. 3D needle-tissue interaction simulation for prostate brachytherapy. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, 2005. 827-834

23 Chentanez N, Alterovitz R, Ritchie D, et al. Interactive simulation of surgical needle insertion and steering. In: Proceedings of ACM Annual Conference on Computer Graphics, 2009. 28: 1-10

24 Tanaka N, Higashimori M, Kaneko M, et al. Noncontact active sensing for viscoelastic parameters of tissue with coupling effect. IEEE Trans Biomed Eng, 2011, 58: 509-520

25 Goksel O, Geghhan E, Salcudean S E. Modeling and simulation of flexible needles. Med Eng Phys, 2009, 31: 1069-1078

26 Yan K G, Podder T, Yu Y, et al. Flexible needle-tissue interaction modeling with depth-varing mean parameter: Preliminary study. IEEE Trans Biomed Eng, 2009, 56: 255-262

27 郑浩峻, 姚望, 高德东, 等. 机器人辅助柔性针穿刺路径的悬臂梁预测模型. 清华大学学报, 2011, 51: 1078-1083

28 Glozman D, Shoham M. Flexible needle steering for percutaneous therapies. Comput Aided Surg, 2006, 11: 194-201

29 高德东, 郑浩峻, 姚望, 等. 基于虚拟弹簧模型的柔性针穿刺仿真研究. 计算机工程, 2010, 36: 273-278

30 Webster R J, Kim J S, Cowan N J, et al. Nonholonomic modeling of needle steering. Int J Robot Res, 2006, 25: 509-525

31 Zhang Y D, Zhao Y J. Kinematic modeling of bevel tip flexible needle. In: Proceedings of International Conference on Intelligent Robotics and Applications, Shanghai, 2010. 405-416

32 Reed K B. Compensating for torsion windup in steerable needles. In: Proceedings of Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, 2008. 936-941

33 Reed K B, Okamura A M, Cowan N J. Modeling and control of needles with torsional friction. IEEE Trans Biomed Eng, 2009, 56: 2905-2916

34 张永德, 赵燕江, 涂飞, 等. 柔性针穿刺路径规划综述. 哈尔滨理工大学学报, 2011, 16: 7-11

35 Abolhassani N, Patel R V, Moallem M. Trajectory generation for robotic needle insertion in soft tissue. In: Proceedings of IEEE EMBS Annual International Conference, San Francisco, 2004. 2730-2733

36 DiMaio S P, Salcudean S E. Needle steering and motion planning in soft tissue. IEEE Trans Biomed Eng, 2005, 52: 965-974

37 Glozman D, Shoham M. Flexible needle steering and optimal trajectory planning for percutaneous therapies. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, 2004. 137-144

38 Alterovitz R, Goldberg K, Okamura A. Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, 2005. 1640-1645

39 Minha D S, Engh J A, Riviere C N. Testing of neurosurgical needle steering via duty-cycled spinning in brain tissue in vitro. In: Proceedings of IEEE EMBS Annual International Conference, Minneapolis, 2009. 258-261

40 Alterovitz R, Branicky M, Goldberg K. Motion planning under uncertainty for image-guided medical needle steering. Int J Robot Res, 2008, 27: 1361-1374

41 Alterovitz R, Branicky M, Goldberg K. Algorithmic Foundation of Robotics Ⅷ: Constant-curvature motion planning under uncertainty with applications in image-guided medical needle steering. Berlin: Springer-Verlag, 2008

42 Asadian A, Kermani M R, Patel R V. Accelerated needle steering using partitioned value iteration. In: Proceedings of American Control Conference, Baltimore, 2010. 2785-2790

43 张永德, 赵燕江, 陈浩. 斜尖柔性针在软组织中的二维路径规划. 机器人, 2011, 22: 750-757

44 Park W, Liu Y, Zhou Y, et al. Kinematic state estimation and motion planning for stochastic nonholonomic system using the exponential map. Robotica, 2008, 26: 419-434

45 Park W, Wang Y, Chirikjian G S. The path-of-probability algorithm for steering and feedback control of flexible needles. Int J Robot Res, 2010, 29: 813-830

46 Duindam V, Alterovitz R, Sastry S, et al. Screw-based motion planning for bevel-tip flexible needles in 3D environments with obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, 2008. 2483-2488

47 Duindam V, Xu J, Alterovitz R, et al. Three-dimensional motion planning algorithms for steerable needles using inverse kinematics. Int J Robot Res, 2010, 29: 789-800

48 Xu J, Duindam V, Alterovitz R, et al. Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring random trees and back chaining. In: Proceedings of IEEE International Conference on Automation Science and Engineering, Washington DC, 2008. 41-46

49 Hing J T, Brooks A D, DeSai J P. A biplannar fluoroscopic approach for the measurement, modeling, and simulation of needle and soft-tissue interaction. Med Image Anal, 2007, 11: 62-78

50 Fichtinger G, Deguet A, Masamune K, et al. Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng, 2005, 52: 1415-1424

51 Krieger A, Susil R C, Ménard C, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng, 2005, 52: 306-313

52 Krieger A, Song S E, Whitcomb L L, et al. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans Mech, 2013, 18: 273-284

53 Tadayyon H, Lasso A, Kaushal A, et al. Target motion tracking in MRI-guided transrectal robotic prostate biopsy. IEEE Trans Biomed Eng, 2011, 58: 3135-3142

54 Aboofazeli M, Abolmaesumi P, Mousavi P, et al. A new scheme for curved needle segmentation in three-dimensional ultrasound images. In: Proceedings of IEEE International Symposium on Biomedical Imaging, Boston, 2009. 1067-1070

55 Zhu M C, Salcudean S E. Real-time image-based b-mode ultrasound image simulation of needles using tensor-product interpolation. IEEE Trans Med Imaging, 2011, 30: 1391-1400

56 Boctor E M, Choti M A, Burdette E C, et al. Three-dimensional ultrasound-guided robotic needle placement: An experimental evaluation. Int J Med Robotics Comput Assist Surg, 2008, 4: 180-191

57 Kallem V, Cowan N J. Image guidance of flexible tip-steerable needles. IEEE Trans Robot, 2009, 25: 191-196

58 Haddadi A, Hashtrudi-Zaad K. Development of a dynamic model for bevel-tip flexible needle insertion into soft tissue, In: Proceedings of IEEE EMBS Annual International Conference, Boston, 2011. 7478-7482

59 Romano J M, Webster R J, Okamura A M. Teleoperation of steerable needles. In: Proceedings of IEEE International Conference on Robotics and Automation, Roma, 2007. 934-939

60 Duchemin G, Maillet P, Poignet P, et al. A hybrid position/force control approach for identification of deformation models of skin and underlying tissues. IEEE Trans Biomed Eng, 2005, 52: 160-170

61 Reed K B, Kallem V, Alterovitz R, et al. Integrated planning and image-guided control for planar needle steering. In: Proceedings of Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, USA, 2008. 819-824

[1] 解永春, 张昊, 胡军, 胡海霞. 神舟飞船交会对接自动控制系统设计[J]. 中国科学 技术科学, 2014, 44(1): 12-19.



本文编号:31806

资料下载
论文发表

本文链接:https://www.wllwen.com/wenshubaike/xxkj/31806.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a8d18***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com