代数学简史
”ilm al-jabr wa’I muqabalah”
代数之前已有算术,算术是解决日常生活中的各种计算问题,即整数与分数的四则运算。代数与算术不同,主要区别在于代数要引入未知数,根据问题的条件列方程,然后解方程求未知数的值。这一类数学问题,早在古埃及的数学纸草书(约公元前
古希腊时代,几何学明显地从代数学中分离出来,并在希腊科学中占统治地位,其威力之大,以至于纯算术的或代数的问题都被转译为几何语言:量被理解为长度,两个量之积解释为矩形、面积等。现在数学中保留的称二次幂为“平方”,三次幂为“立方”,就是来源于此。古希腊时期流传至今的与代数有关的著作只有丢番图的《算术》。该书中解决了某些一次、二次方程问题和不定方程问题,出现了缩写符号和应用负数之例。其问题构思精巧,解题方法极多,但最大的缺点是没有解方程的一般方法。
<![if !vml]><![endif]>的一个根的公式<![if !vml]><![endif]>及某些不定方程的通解的一般形式。印度人已经用缩写文字和一些记号来表示未知数和运算。
在古代,只有希腊几何学从数学中分离出来,算术与代数在很长时期内都是交错在一起的,人们只能从中归纳出具有代数特点的问题,作为数学的历史痕迹。代数学发展成为一门独立的数学分支应归功于中世纪的阿拉伯人。阿拉伯数学家系统地研究了二次方程的解法,确定了解方程求未知量是代数学的基本特征,建立了解方程的变形法则,还特别创造了三次方程的几何解法。花拉子米的《代数学》传到欧洲后,作为标准课本流行了几百年,而奥马
中国古代在数学方面有光辉的成就。在古代数学名著《九章算术》(公元1世纪)中,记载了用算筹解一次联立方程组的一般方法。所采用的“正负术”中给出了负数的概念,建立了正、负数的运算法则。中国古代把开各次方和解二次以上的方程,统称为“开方”。在《周髀算经》和赵爽注以及《九章算术》和刘徽注中已经有完整的开平方法和开立方法。在二次方程<![if !vml]><![endif]>的数值解法和求根公式这两方面也有一定的成就。初唐王孝通的《缉古算经》的大部分内容是求三次方程的正根,还发展了三次方程的数值解法。宋元时期,中国数学家对高次方程的研究取得更加辉煌的成就。北宋数学家贾宪提出了著名的“开方做法本源图”(即贾宪三角)和增乘开方法,并用来解决二项方程近似根求法。南宋秦九韶把增乘开方法运用于高次方程,在高次方程数值解法问题上做出了具有世界意义的重大贡献。金、元之际数学家李冶研究列一元方程式的方法,创立“天元术”;元朝数学家朱世杰又把这种方法推广到高次方程组,创立“四元术”,为代数学的发展做出了新的贡献。
在中世纪的欧洲,对代数学有较大贡献的是意大利数学家斐波那契,他的《算盘书》(
二次方程的求根公式在花拉子米时代就已经得到,但三次、四次方程的求根公式却直到
在出现普遍适用的代数符号之前,,代数方程理论的发展是缓慢的、曲折的。花拉子米的《代数学》完全用文字叙述,使用起来很不方便。丢番图和印度数学家都使用国一些缩写文字和记号,但很不系统,没有被后人采纳。在12世纪以后欧洲的代数学文献中陆续出现过一些简写法,包括一些运算的表示,如用<![if !vml]><![endif]>和<![if !vml]><![endif]>
符号代数学的最终确立是由法国数学家韦达完成的。他的《分析术入门》被西方数学史家推崇为第一部符号代数学。在本书中,用辅音字母表示已知数,用元音字母表示未知数。韦达还明确指出代数与算术的区别,前者是“类的算术”(施行于事物的类和形式的运算),后者是“数的算术”。于是代数学更带有普遍性,形式更抽象,应用更广泛。在稍后的工作里,韦达改进了三次、四次方程的解法。他还对
几乎与伽罗瓦的工作同时,英国数学家皮科克发表了他的《代数通论》(
另一项引起代数学变革的工作来自英国数学家哈密顿和德国数学家格拉斯曼,前者在
在数论方面,由于对费马大定理的研究,德国数学家库默尔引进了“理想数”概念(1845-1847),在此基础上,戴德金发展了理想理论。这项工作不仅对代数数论的发展有着重要影响,而且开辟了抽象代数发展的道路。
在布尔的工作的影响下,英国数学家凯莱和西尔维斯特共同创立了代数型的理论,奠定了关于代数不变量理论的基础。这项工作也是引向抽象代数学建立的动力。
抽象代数学是以研究数字、文字和更一般元素的代数运算的规律和由这些运算适合的公理而定义的各种代数结构的性质为其中心问题的。因此,抽象代数学对于全部现代数学和一些其他科学领域都有重要的影响。
随着数学中各分支理论的发展和应用的需要,抽象代数学得到不断的发展。在
本文编号:30031
本文链接:https://www.wllwen.com/wenshubaike/zykc/30031.html