肺结节或肿块320排动态容积CT双入口灌注成像与病理的对照
[Abstract]:Objective: to investigate the relationship between perfusion imaging and pathological basis of 320 row dynamic volume CT perfusion imaging in pulmonary nodule or mass lesions, and to study the perfusion characteristics and hemodynamics of lung lesions of different histological types. Methods: from August 2016 to February 2017, 50 patients with intrapulmonary nodule or mass lesions, including 12 adenocarcinoma and 8 squamous cell carcinoma of the lung, were examined by biopsy and biopsy, including 12 cases of lung adenocarcinoma and 8 cases of squamous cell carcinoma of the lung, which were confirmed by surgical resection (41 cases) and biopsy (9 cases), including lung adenocarcinoma (12 cases) and squamous cell carcinoma (8 cases). There were 6 cases of small cell lung cancer, 9 cases of acute inflammation, 7 cases of chronic inflammation and 8 cases of pulmonary tuberculosis. All patients underwent 320 row dynamic volume CT perfusion scan, and the results of perfusion parameters were compared with pathological results. Results: there were significant differences in (BAF), perfusion index (PI) between benign and malignant pulmonary nodules or masses (P0.05). There was no significant difference in (PAF) value of pulmonary artery blood flow between benign and malignant nodules or masses (P0.05). The optimal threshold value of). PI for differentiating benign and malignant tumors was 57.65, the sensitivity was 90.0 and the specificity was 66.7%. The positive predictive value was 87.5 and the negative predictive value was 85.5. The perfusion results of pulmonary nodules or masses were related to their pathological types. Conclusion: the perfusion results of pulmonary nodules or masses are closely related to the pathological types. The main malignant lesions are bronchial artery blood supply. Pulmonary artery blood supply is the main benign lesion. 320 row dynamic volume CT pulmonary perfusion imaging plays an important role in differentiating benign and malignant pulmonary lesions.
【作者单位】: 广东医科大学附属医院放射科;
【基金】:湛江市非资助科技攻关计划项目(2015B01071)
【分类号】:R563;R816.41
【相似文献】
相关期刊论文 前10条
1 苗芬;吴龙海;周荷琴;;一种基于相关矩阵的肺结节增强算法[J];北京生物医学工程;2008年05期
2 闫海跃;;多层螺旋高分辨率CT对良性肺结节的诊断价值[J];中国实用医药;2011年15期
3 陆长城;李圣磊;;矽肺结节的高分辨率表现及鉴别诊断[J];中国社区医师(医学专业);2012年11期
4 高军,李基根,周全;不典型肺结节的螺旋CT与临床病理诊断的对比分析[J];中国医学影像学杂志;2005年05期
5 高江峰;王文秀;纪俊雨;催春yN;李云霄;王新举;冯光;;孤立性外周肺结节的影像学诊断分析[J];河北医药;2009年17期
6 徐才国;张杰华;柯孔良;尹雪君;朱卫峰;牛富业;;CT引导下经皮胸膜或肺结节穿刺的临床应用[J];中国医学影像技术;2009年S1期
7 赵培民;;矽肺结节的CT诊断与鉴别诊断[J];现代医用影像学;2008年04期
8 朱昭环;耿敬标;周轲;胡东;李文进;;数字化断层融合技术在肺结节检查中的应用价值[J];重庆医学;2014年05期
9 杨顺娥;徐继鸿;张瑾;穆尼拉;;经纤维支气管镜肺活检诊断肺周围性病变[J];新疆医学;2002年05期
10 王凯;张煜;刘哲星;林炳权;吴志强;曹蕾;;基于自适应体窗结构分析的肺结节检测方法[J];南方医科大学学报;2014年06期
相关会议论文 前2条
1 查开继;高剑波;张永高;郭华;杨学华;周志刚;;断层融合成像与数字X线成像诊断肺结节的比较研究[A];2010中华医学会影像技术分会第十八次全国学术大会论文集[C];2010年
2 胡红杰;;非实性肺结节诊断和处理指南[A];2013年浙江省放射学学术年会论文集[C];2013年
相关硕士学位论文 前4条
1 滕雅琴;计算机辅助检测系统CT肺结节检出方式的研究[D];新疆医科大学;2016年
2 王献东;基于群体智能的真假肺结节分类算法研究与实现[D];东北大学;2012年
3 王林帅;低剂量CT扫描检测肺结节的实验研究[D];青岛大学;2014年
4 孙海宁;肺结节MDCT容积定量影响因素与容积阈值分割法诊断效能的研究[D];天津医科大学;2010年
,本文编号:2344787
本文链接:https://www.wllwen.com/yixuelunwen/huxijib/2344787.html