当前位置:主页 > 医学论文 > 泌尿论文 >

现行结核菌检测技术应用于泌尿系统结核诊断的研究进展

发布时间:2016-11-04 07:22

  本文关键词:现行结核菌检测技术应用于泌尿系统结核诊断的研究进展,由笔耕文化传播整理发布。


综 述

现行结核菌检测技术应用于泌尿系统结核诊断的研究进展 何莎,周伟,张五星

100091 北京,解放军第309医院全军器官移植研究所肾脏病科
周伟,Email: snowpromise2012@163.com

摘要:泌尿系统结核居于肺外结核第三位,其中最主要的是肾结核。肾结核是由结核分枝杆菌引起的慢性、进行性、破坏性病变,常因其结核症状不典型致使临床诊疗上易漏诊误诊,从而延误治疗时机,给患者泌尿系统带来很大损伤。目前泌尿系统结核的确诊主要依赖于临床表现结合实验室检查、影像学检查等。但是横跨在现有技术与泌尿系统结核临床诊断需要之间的鸿沟依旧为其早期诊断、病情评估和预后监测带来了不可避免的影响,这也阻碍了泌尿系统结核诊断方式更新的探索与发展。伴随着纳米技术和微流体技术的飞速发展,很多检测结核分枝杆菌的生物传感器应运而生。近年来纳米/微流体技术已经被广泛应用于发展现场检测多种疾病的诊断和监测技术方面,这预示着在结核病诊断方面应用纳米/微流体技术也是不可避免的趋势,更为诊断泌尿系统结核寻找更为可靠准确的依据和方法提供了新的契机。以下对泌尿系统结核的临床表现、诊断方法、横跨在现有技术与泌尿系统结核临床诊断之间的鸿沟、结核病诊断的纳米/微流体技术以及纳米/微流体技术能否为泌尿系统结核诊断与监测提供未来前景等方面进行综述。

关键词:结核,泌尿生殖系统; 分枝杆菌,,结核; 检测方法; 纳米/微流体技术

Research progress on the application of the current tuberculosis detection technology in the diagnosis of urinary tuberculosis He Sha, Zhou Wei, Zhang Wuxing

Department of Nephropathy, Organ Transplant Research Institute, the 309th Hospital of PLA, Beijing 100091, China
Zhou Wei, Email: snowpromise2012@163.com

Abstract:Tuberculosis of urinary system is third of the extra pulmonary tuberculosis, because of its atypical clinical symptoms of tuberculosis caused easily misdiagnosed, thus delay treatment timing, for patients with urinary system bring great damage. At present, the diagnosis of urinary system tuberculosis mainly depends on the clinical manifestations with laboratory examination and imaging examination. But across the gap of existing technology and clinical diagnosis of tuberculosis of urinary system between the needs still brings the inevitable effect on early diagnosis, condition assessment and prognosis. It also impedes the update tuberculosis diagnosis way of urinary system. With the rapid development of the nanotechnology/microfluidics, biosensors for the detection of Mycobacterium tuberculosis emerge as the times. In recent years, nanotechnology/microfluidics has already been widely applied to the detection of various diseases at point of care. This indicates the inevitable trend of the application of nanotechnology/microfluidics in the diagnosis of tuberculosis, also provides a new opportunity for looking for more reliable and accurate basis and methods about tuberculosis of urinary system diagnosis. Hence introduced the clinical manifestations of tuberculosis of urinary system, the diagnosis of urinary system tuberculosis, the gap between existing technology, clinical diagnosis of tuberculosis of urinary system, and the diagnosis of tuberculosis in nanotechnology/microfluidics and they can provide the future prospects for the diagnosis of urinary tuberculosis detection.

Keywords:Tuberculosis, urogenital; Mycobacterium tuberculosis; Detection method; Nanotechnology/microfluidics

字体

阅读

  • PDF (0.9MB)
  • 评论


  • 参考文献   [1] WHO. Global tuberculosis control 2011b. http: //www. who. int/tb/publications/global_report/en/2011[S].[accessed on January 26th, 2012].

      [2] 黄建生, 沈梅, 孙亚玲. 上海市肺外结核的流行病学分析[J]. 中华结核和呼吸杂志, 2000, 23(10): 606-608.

      [3] 许宾, 孙加源, 黄燕. 综合医院肺外结核101例临床分析[J]. 中国防痨杂志, 2004, 26(3): 151-154.

      [4] Noertjojo K1, Tam CM, Chan SL, et al. Extra-pulmonary and pulmonary tuberculosis in Hong Kong[J]. Int J Tuberc Lung Dis, 2002, 6(10): 879-886.

      [5] Wang S, Inci F, De Libero G, et al. Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics[J]. Biotechnology Advances, 2013, 31(4): 438-449.

      [6] He F, Zhang R. Rapid diagnosis of M. tuberculosis using a piezoelectric immunosensor[J]. Anal Sci, 2002, 18: 397-401.

      [7] Buijtels PC, Willemse-Erix HF, Petit PL, et al. Rapid identification of mycobacteria by Raman spectroscopy[J]. J Clin Microbiol, 2008, 46: 961-965.

      [8] Chun AL. Nanoparticles offer hope for TB detection[J]. Nat Nanotechnol, 2009, 4(11): 698-699.

      [9] Diaz-Gonzalez M, Gonzalez-Garcia MB, Costa-Garcia A. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes[J]. Biosens Bioelectron, 2005, 20: 2035-2043.

      [10] Thanyani ST, Roberts V, Siko DGR, et al. A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients[J]. J Immunol Methods, 2008, 332: 61-72.

      [11] H??k F, Kasemo B, Nylander T, et al. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study[J]. Anal Chem, 2001, 73: 5796-804.

      [12] Ren J, He F, Yi S, et al. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis[J]. Biosens Bioelectron, 2008, 24: 403-409.

      [13] Buijtels PC, Willemse-Erix HF, Petit PL, et al. Rapid identification of mycobacteria by Raman spectroscopy[J]. J Clin Microbiol, 2008, 46: 961-965.

      [14] Costa P, Amaro A, Botelho A, et al. Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex[J]. Clin Microbiol Infect, 2010, 16: 1464-1469.

      [15] Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, et al. Specific detection of Mycobacterium sp genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor[J]. Anal Biochem, 2011, 417: 73-79.

      [16] Breslauer DN, Maamari RN, Switz NA, et al. Mobile phone based clinical microscopy for global health applications[J]. PLoS One, 2009, 22, 4(7):e6320.

      [17] Alyassin MA, Moon S, Keles HO, et al. Rapid automated cell quantification on HIV microfluidic devices[J]. Lab Chip, 2009, 9: 3364-3369.

      [18] Chin CD, Laksanasopin T, Cheung YK, et al. Microfluidics-based diagnostics of infectious diseases in the developing world[J]. Nat Med, 2011, 17: 1015-1019.

      [19] Christodoulides N, Mohanty S, Miller CS, et al. Application of microchip assay system for the measurement of C-reactive protein in human saliva[J]. Lab Chip, 2005, 5: 261-269.

      [20] Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL, et al. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS)[J]. Lab Chip, 2011, 11: 845-850.

      [21] Gurkan UA, Moon S, Geckil H, et al. Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing[J]. Biotechnol J, 2011, 6: 138-149.

      [22] Kim YG, Moon S, Kuritzkes DR, et al. Quantum dot-based HIV capture and imaging in a microfluidic channel[J]. Biosens Bioelectron, 2009, 25: 253-258.

      [23] Moon S, Keles HO, Ozcan A, et al. Integrating microfluidics and lensless imaging for point-of-care testing[J]. Biosens Bioelectron, 2009, 24: 3208-3214.

      [24] Moon S, Gurkan UA, Blander J, et al. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients[J]. PLoS One, 2011, 6: e21409.

      [25] Wang S, Xu F, Demirci U. Advances in developing HIV-1 viral load assays for resource-limited settings[J]. Biotechnol Adv, 2010, 28: 770-781.

      [26] Wang S, Esfahani M, Gurkan UA, et al. Efficient on-chip isolation of HIV subtypes[J]. Lab Chip, 2012, 12: 1508-1515.

      [27] Wang S, Zhao X, Khimji I, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care[J]. Lab Chip, 2011, 11: 341-348.

      [28] Dheda K, van Zyl Smit R, Badri M, et al. T-cell interferon-gamma release assays for the rapid immunodiagnosis of tuberculosis: clinical utility in high-burden vs. low-burden settings[J]. Curr Opin Pulm Med, 2009, 15: 188-200.

    (编辑:戚红丹 收稿日期:2014-09-28)


      本文关键词:现行结核菌检测技术应用于泌尿系统结核诊断的研究进展,由笔耕文化传播整理发布。



    本文编号:163665

    资料下载
    论文发表

    本文链接:https://www.wllwen.com/yixuelunwen/mjlw/163665.html


    Copyright(c)文论论文网All Rights Reserved | 网站地图 |

    版权申明:资料由用户b8186***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com