PPAR-γ在IgA肾病发生中的作用及其机理研究
本文选题:IgA肾病 + PPAR-γ ; 参考:《复旦大学》2014年硕士论文
【摘要】:目的:PPAR-γ作为配体依赖的核因子,除了经典的调节糖、脂代谢作用外,其抗炎等作用近年受到广泛关注。本研究运用牛血清γ球蛋白(bovine gammaglobulin, BGG)建立IgA肾病大鼠模型,并观察PPAR-γ激动剂在本病发生中的作用及其与替米沙坦的协同治疗效果和PPAR-γ与TLR4的相互关系。方法:77只雄性Lewis大鼠,体重40-55g,饲养温度25℃,12h昼夜轮替,自由饮食,适应性喂养1周后随机分为5组:①对照组(Control, n=18):自由饮用6mmol/l的盐酸酸化水;②IgA肾病组(IgAN,n=28):自由饮用含0.1%BGG的6mmol/l盐酸酸化水,连续9周,其后连续3天尾静脉注射1mg BGG;③吡格列酮组(Pio,n=9):将吡格列酮药片研磨成粉,每天取1g溶于90m1生理盐水制成悬浊液,用前摇匀,按3m1/只灌胃4周;④吡格列酮+替米沙坦组(Pio+ARB, n=10):将吡格列酮、替米沙坦药片研磨成粉,每天分别取1g和0.3g溶于120m1生理盐水制成悬浊液,用前摇匀,按3m1/只灌胃4周;⑤TLR4抑制剂组(TAK242,n=12):将配置好的TLR4抑制剂TAK242脂肪乳剂按7.5ml/kg连续8天尾静脉注射。分别于第4周末、第6周末、第9周末测各组大鼠尿白蛋白/肌酐(ACR),显微镜下行尿红细胞计数,腹主动脉采血检测血肌酐和尿素氮,光镜下观察肾脏病理损害,用RT-PCR法检测各组肾组织PPAR-γ mRNA和TLR4 mRNA的表达,Western Blot方法检测肾组织PPAR-γ蛋白、TLR4蛋白和IL-1p蛋白的表达情况,免疫荧光检测肾小球IgA沉积情况。结果:①第9周末造模结束后,模型组尿白蛋白/肌酐明显高于对照组(4.45 ±1.33mg/mmol vs 2.89±0.96mg/mmol, P=0.05)。尿红细胞计数两组无明显差别。与对照组相比,模型组大鼠SCr、BUN、ALT、AST均无明显变化(均P0.05)模型组大鼠与对照组相比,肾脏组织系膜细胞及系膜基质增生明显,肾小球横截面细胞数明显增多(51±4个 vs 41±2个,P0.01),肾小球体积明显增大,少数肾小管上皮细胞肿胀,间质轻度炎性细胞浸润。对照组肾小球免疫荧光未见IgA沉积,模型组肾小球可见亮绿色团块状或絮状IgA沉积。②与对照组相比,IgA肾病组ACR明显升高(1.72±0.41mg/mmol vs 1.27±0.15mg/mmol),差异有统计学意义(P=0.013);吡格列酮组尿ACR与对照组相比无明显差异(1.13±0.44mg/mmol vs 1.27±0.15mg/mmol,P=0.41)但显著低于IgA肾病组(1.13± 0.44mg/mmol vs 1.72±0.41mg/mmol,P=0.015);吡格列酮+替米沙坦组ACR与对照组相比无明显差异(1.01±0.45mg/mmol vs 1.27±0.15mg/mmol,P=0.41)但显著低于IgA肾病组(1.01±0.45mg/mmol vs 1.72±0.41mg/mmol,P=0.00)。吡格列酮组与吡格列酮+替米沙坦组ACR无显著差异(1.01mg/mmol±0.45 vs 1.13 ±0.44mg/mmol,P=0.18)。与对照组相比,IgA肾病组肾小球横截面细胞数量明显增多(50±8个 vs 40±6个,P=0.03),肾小球体积明显增大,少数肾小管上皮细胞肿胀,间质轻度炎性细胞浸润;吡格列酮组与对照组相比肾小球横截面细胞数量无明显差异(46±6个vs40±6个,P0.05),吡格列酮组与IgA肾病组相比,肾小球横截面细胞数量减少未达到统计学意义(46±6个vs 50±8个,P=0.23),肾小管基本正常,间质未见明显炎性细胞浸润;吡格列酮+替米沙坦组与对照组相比肾小球横截面细胞数量无明显差异(41±4个 vs 40±6个,P0.05)但显著低于IgA肾病组(41±4个 vs 50±8个,P=0.03)。与吡格列酮组相比,减少未达到统计学差异(41±4个 vs 46±6个,P=0.08),肾小管正常,间质未见明显炎性细胞浸润。与对照组相比,IgA肾病组血清IL-1β水平和肾组织IL-1β蛋白的表达均明显升高(47.45±12.91pg/ml vs 34.49±12.09pg/ml,P=0.01;0.46 ±0.21 vs 0.27±0.10,P=0.04);吡格列酮组与对照组相比血清IL-1β水平和肾组织IL-1β蛋白的表达均无明显差异(39.06±17.92pg/ml vs 34.49±12.09pg/ml,P0.05;0.32±0.15 vs 0.27±0.10,P=0.45),与IgA肾病组相比,血清IL-1β水平和肾组织IL-1β蛋白的表达降低均无统计学差异(39.06±17.92pg/ml vs 47.45 ±12.91pg/ml,P=0.30;0.32±0.15 vs 0.46±0.21,P=0.19);吡格列酮+替米沙坦组与对照组相比,血清IL-1β的水平和肾组织IL-1β蛋白的表达基本相同(34.49 ±14.55pg/ml vs 34.49±12.09pg/ml,P0.05;0.28±0.09 vs 0.27±0.10,P=0.94)但均显著低于IgA肾病组(34.49±14.55pg/ml vs 47.45±12.91pg/ml,P=0.04;0.28 ±0.09 vs 0.46±0.21,P=0.04)。与吡格列酮组相比,吡格列酮+替米沙坦组血清IL-1β和肾组织IL-1β蛋白的表达水平均未达到统计学差异(34.49±14.55pg/ml vs 39.06±17.92pg/ml,P=0.59;0.28±0.09 vs 0.32±0.15,P=0.46)。与对照组相比,IgA肾病组大鼠肾组织PPAR-γ蛋白的表达明显升高(0.64±0.14vs0.42±0.04,P=0.03), PPAR-γmRNA的表达无显著差异(1.20±0.42 vs 0.98±0.03,P=0.39);吡格列酮组与对照组相比,PPAR-y蛋白和mRNA的表达均明显增加(0.71±0.19vs 0.42±0.04,P=-0.03;1.58±0.20 vs 0.98±0.03,P=-0.001)。与IgA肾病组相比,吡格列酮组PPAR-y蛋白和mRNA的表达升高未达到统计学意义(0.71±0.19 vs0.64±0.14,P=0.44;1.58±0.20 vs 1.20±0.42,P=0.15);吡格列酮+替米沙坦组与对照组、IgA肾病组相比,PPAR-y蛋白和mRNA的表达均无统计学差异(均P0.05)。与吡格列酮组相比,吡格列酮组+替米沙坦组PPAR-y蛋白和mRNA的表达均明显降低(0.56±0.08 vs 0.71±0.19,P=-0.047;1.02±0.17 vs 1.58±0.20,P=0.005)。③与IgA肾病组相比,TLR4抑制剂组ACR显著降低(1.13± 0.44mg/mmol vs 1.72±0.41mg/mmol, P=0.015),光镜下系膜细胞和系膜基质明显减少,肾小球横截面细胞数明显降低(35±3个 vs 45±3个,P0.01),血清IL-1p和肾组织IL-1p蛋白的表达无统计学意义(30.20±4.93pg/ml vs 32.99±5.64pg/ml,0.56±0.22 vs 0.63±0.17,均P0.05),PPAR-γ的蛋白表达明显增加(0.86±0.20 vs 0.65±0.13,P=0.03),PPAR-γ的mRNA表达无统计学差异(1.00±0.54vs0.87±0.35,P=0.63)。与IgA肾病组相比,吡格列酮组TLR4蛋白的表达明显降低(0.12±0.03 vs 0.21±0.05,P=0.001),TLR4 mRNA的表达降低未达到统计学差异(0.78±0.21vs0.95±0.09,P=0.13)。结论:①用口服BGG酸化水9周,尾静脉注射BGG 3天的方法可以建立轻-中度IgA肾病大鼠模型。②在IgA肾病动物模型中,PPAR-γ激动剂吡格列酮、血管紧张素受体阻断剂替米沙坦均可以降低炎症因子的水平,降低蛋白尿,抑制系膜细胞和系膜基质的增殖,改善IgA肾病。替米沙坦对吡格列酮的协同治疗效果不明显。③TLR4抑制剂TAL242可以改善IgA肾病,降低蛋白尿,改善系膜细胞和系膜基质的增殖,在IgA肾病动物体内,TLR4与PPAR-γ可以相互抑制,相互影响。
[Abstract]:Objective: PPAR- gamma, as a ligand dependent nuclear factor, has been widely concerned in recent years, in addition to the classical regulation of sugar and lipid metabolism, and its anti-inflammatory effects have been widely concerned in recent years. This study used bovine serum gamma globulin (bovine gammaglobulin, BGG) to establish a rat model of IgA nephropathy, and observed the role of PPAR- gamma agonist in the pathogenesis of this disease and its effect on telmisartan. Co therapy effect and the relationship between PPAR- gamma and TLR4. Methods: 77 male Lewis rats, weight 40-55g, feeding temperature 25 degrees, 12h circadian rotation, free diet, and free diet after 1 weeks of adaptive feeding, randomly divided into 5 groups: (Control, n=18): free drinking of 6mmol/l in hydrochloric acid water; and IgA nephrotic group (IgAN, n=28): free drinking 0. 1%BGG 6mmol/l hydrochloric acid water for 9 weeks, followed by 3 days of continuous injection of 1mg BGG in the tail vein; 3. Pioglitazone group (Pio, n=9): grind pioglitazone tablets into powder, take 1g dissolved in 90m1 physiological saline daily to make the suspension, shake well before using 3m1/ only for 4 weeks; 4. Pioglitazone + telmisartan group (Pio+ARB, n=10): pioglitazone, tiimi Sartan tablets were grinded into powder, and 1g and 0.3g dissolved in 120m1 saline solution were made every day respectively. Shake well before use and only gavage the stomach for 4 weeks by 3m1/; 5. TLR4 inhibitor group (TAK242, n=12): a configured TLR4 inhibitor, TAK242 fat emulsion, was injected into the tail vein for 8 days by 7.5ml/kg. The rats were measured at the fourth weekend, sixth weekend, and ninth weekend. Urinary albumin / creatinine (ACR), urinary red blood cell count under microscope, blood creatinine and urea nitrogen in abdominal aorta, the pathological damage of kidney was observed under light microscope. The expression of PPAR- gamma mRNA and TLR4 mRNA in renal tissue were detected by RT-PCR. The expression of PPAR- gamma protein, TLR4 protein and IL-1p protein in renal tissue was detected by Western Blot method, and the expression of TLR4 protein and IL-1p protein was detected and immunized. Results: after the end of the ninth weekend model, the urinary albumin / creatinine was significantly higher in the model group than in the control group (4.45 + 1.33mg/mmol vs 2.89 + 0.96mg/mmol, P=0.05). There was no significant difference between the two groups of urine red blood cell count. Compared with the control group, there was no significant change in SCr, BUN, ALT, and AST in the model group (all P0.05) model. Compared with the control group, the proliferation of mesangial cells and mesangial matrix in renal tissue was obvious, and the number of mesangial cross section cells increased significantly (51 + 4 vs 41 + 2, P0.01), the volume of glomeruli was obviously enlarged, a small number of renal tubular epithelial cells were swollen, and the interstitium was mild inflammatory cell infiltration. The glomerular immunofluorescence of the control group was not IgA deposit, and the model group kidney was not found. Compared with the control group, the ACR in the IgA nephropathy group increased significantly (1.72 + 0.41mg/mmol vs 1.27 + 0.15mg/mmol), and the difference was statistically significant (P=0.013). The urine ACR of the pioglitazone group was not significantly different from the control group (1.13 + 0.44mg/mmol vs 1.27 + 0.15mg/mmol, P=0.41) was significantly lower than that of the control group. The disease group (1.13 + 0.44mg/mmol vs 1.72 + 0.41mg/mmol, P=0.015) and pioglitazone + telmisartan group ACR had no significant difference compared with the control group (1.01 + 0.45mg/mmol vs 1.27 + 0.15mg/mmol, P=0.41), but significantly lower than the IgA nephropathy group (1.01 + 0.45mg/mmol vs 1.72 + 0, 0). There was a difference (1.01mg/mmol + 0.45 vs 1.13 + 0.44mg/mmol, P=0.18). Compared with the control group, the number of glomerular cross section cells in the IgA nephropathy group increased significantly (50 + 8 vs 40 + 6, P=0.03), the glomerular volume increased obviously, a few renal tubular epithelial cells were swollen and the interstitium was mild inflammatory cell infiltration, and the pioglitazone group was compared with the control group There was no significant difference in the number of cross section cells (46 + 6 vs40 + 6, P0.05). Compared with the IgA nephropathy group, the number of mesangial cross section cells decreased not statistically (46 + 6 vs 50 + 8, P=0.23). The renal tubules were basically normal and the interstitium was not obviously inflammatory cell infiltration; pioglitazone + telmisartan group was compared with the control group. There was no significant difference in the number of cells in the cross section (41 + 4 vs 40 + 6, P0.05), but significantly lower than the IgA nephropathy group (41 + 4 vs 50 + 8, P=0.03). Compared with the pioglitazone group, the decrease was not statistically significant (41 + 4 vs 46 + 6, P=0.08), renal tubules were normal, and no obvious inflammatory cell infiltration was found in the interstitium. Compared with the control group, the blood of IgA nephropathy group was compared with the control group. The level of IL-1 beta and the expression of IL-1 beta protein in the renal tissue were significantly increased (47.45 + 12.91pg/ml vs 34.49 + 12.09pg/ml, P=0.01; 0.46 + 0.21 vs 0.27 + 0.10, P=0.04), and there was no significant difference between the serum IL-1 beta level and the expression of IL-1 beta protein in the renal tissue compared with the control group (39.06 + 39.06 + 0.10). 0.32 0.15 vs 0.27 + 0.10, P=0.45), compared with the IgA nephropathy group, there was no significant difference in the level of serum IL-1 beta and the expression of IL-1 beta protein in renal tissue (39.06 + 17.92pg/ml vs 47.45 + 12.91pg/ml, P=0.30; 0.32 + 0.15 vs 0.46 + 0.21, P=0.19); and the level of the beta and renal tissue of the pioglitazone + telmisartan group The expression of protein was basically the same (34.49 + 14.55pg/ml vs 34.49 + 12.09pg/ml, P0.05; 0.28 + 0.09 vs 0.27 + 0.10, P=0.94), but significantly lower than that of IgA nephropathy group (34.49 + 14.55pg/ml vs 47.45 + 12.91pg/ml, P=0.04; 0.28 + 0.09 vs 0.46 + 0.21). The expression level of 1 beta protein did not reach statistical difference (34.49 + 14.55pg/ml vs 39.06 + 17.92pg/ml, P=0.59; 0.28 + 0.09 vs 0.32 + 0.15, P=0.46). Compared with the control group, the expression of PPAR- gamma protein in renal tissue of IgA nephropathy rats increased significantly (0.64 + 0.14vs0.42 + 0.04, P= 0.03), PPAR- gamma mRNA was no significant difference (1.20 + 0.42 0.98 0.98) The expression of PPAR-y protein and mRNA increased significantly (0.71 + 0.19vs 0.42 + 0.04, P=-0.03, 1.58 + 0.20 vs 0.98 + 0.03, P=-0.001) in the pioglitazone group (1.58 + 0.20 vs 0.98 +, P=-0.001). The increase of the expression of PPAR-y protein and mRNA in the pioglitazone group was not statistically significant (0.71 + 0.19 vs0.64 + 0.14, P=0.44; 1.58). 0.20 vs 1.20 + 0.42, P=0.15), the expression of PPAR-y protein and mRNA was not significantly different between the pioglitazone + telmisartan group and the control group (P0.05). Compared with the pioglitazone group, the expression of PPAR-y protein and mRNA in the pioglitazone group was significantly decreased (0.56 + 0.08 vs 0.71 + 0.19, P=-0.047; 1.02 + 0.17 vs. 1.58 + 0.20, P=0.005). Compared with IgA nephropathy group, ACR in TLR4 inhibitor group was significantly decreased (1.13 + 0.44mg/mmol vs 1.72 + 0.41mg/mmol, P=0.015), mesangial cells and mesangial matrix decreased significantly under light microscope, and the number of glomerular cross section cells decreased significantly (35 + 3 vs 45 + 3, P0.01). The expression of serum IL-1p and renal tissue IL-1p protein was not statistically significant Significance (30.20 + 4.93pg/ml vs 32.99 + 5.64pg/ml, 0.56 + 0.22 vs 0.63 + 0.17, P0.05), the protein expression of PPAR- gamma increased significantly (0.86 + 0.20 vs 0.65 + 0.13, P=0.03), and PPAR- gamma mRNA expression was not statistically significant (1 + 0.54vs0.87 + 0.35, P=0.63). 0.21 + 0.05, P=0.001), the expression of TLR4 mRNA decreased not statistically (0.78 + 0.21vs0.95 + 0.09, P=0.13). Conclusion: (1) oral BGG acidified water for 9 weeks and 3 days of BGG in the tail vein can establish a rat model of mild to moderate IgA nephropathy. (2) in the animal model of IgA nephropathy, PPAR- gamma agonist, pioglitazone, angiotensin receptor blocker Telmisartan can reduce the level of inflammatory factors, reduce proteinuria, inhibit the proliferation of mesangial cells and mesangial matrix, and improve IgA nephropathy. Telmisartan's synergistic effect on pioglitazone is not obvious. (3) TLR4 inhibitor TAL242 can improve IgA nephropathy, reduce proteinuria, improve the proliferation of mesangial cells and mesangial matrix, in IgA In nephrotic animals, TLR4 and PPAR- gamma can inhibit each other and interact with each other.
【学位授予单位】:复旦大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R692
【相似文献】
相关期刊论文 前10条
1 任黔川;彭芝兰;谭欣;;PPARγ在卵巢浆液性囊腺癌中的表达[J];重庆医学;2009年23期
2 张乾勇;PPAR的结构与功能及其生物学作用[J];国外医学(卫生学分册);2000年05期
3 白玉杰,牛丹,赵锦荣,张文红,吕贯廷,阎小君;Rapid detection of PPAR_γ gene Pro12Ala polymorphism with fluorescence polarization in Chinese population[J];Journal of Medical Colleges of PLA;2003年03期
4 袁平戈;PPARα的主要功能是什么[J];中华肝脏病杂志;2003年05期
5 潘光栋;PPAR-γ及其配体在人体细胞的分子研究[J];职业卫生与病伤;2003年02期
6 曹廷兵,叶治家,彭家和,巩燕,黄刚;人PPARγ2 cDNA的克隆及其在大肠杆菌中的表达纯化[J];第三军医大学学报;2004年01期
7 王刚,陈继俊,倪沛洲;PPARα受体亚型与新药研究[J];药学进展;2004年01期
8 叶平;过氧化体增殖物激活型受体(PPAR)与心血管疾病[J];中华心血管病杂志;2004年07期
9 孙曙光,周智广;PPARγ与1型糖尿病[J];国外医学.内分泌学分册;2005年02期
10 胡桂芳,武革;PPARγ与2型糖尿病大血管病变的研究进展[J];广东医学院学报;2005年01期
相关会议论文 前10条
1 ;Genetic polymorphisms of PPAR-γ,HHEX,PTPRD,KCNQ1,and SRR affect therapeutic efficacy of Pioglitazone in Chinese Patients with type 2 diabetes[A];传承与发展,创湖南省生理科学事业的新高——湖南省生理科学会2011年度学术年会论文摘要汇编[C];2011年
2 ;Dynamic analysis and ligand binding affinity investigation of PPAR mutations[A];华东六省一市生物化学与分子生物学会2003年学术交流会论文摘要集[C];2003年
3 童南伟;;过氧化物酶增殖物激活受体(PPAR)a与脂质代谢[A];全国首届代谢综合征的基础与临床专题学术会议论文汇编[C];2004年
4 王伟铭;章慧娣;刘峰;陈佳韵;陈楠;;PPARγ活化对肾间质成纤维细胞的作用研究[A];2007年浙沪两地肾脏病学术年会资料汇编[C];2007年
5 陈刚;林新富;梁继兴;林丽香;沈晓丽;;过氧化物酶体增殖物激活受体γ(PPARγ)基因多态性与老年男性骨质疏松症相关性研究[A];2008内分泌代谢性疾病系列研讨会暨中青年英文论坛论文汇编[C];2008年
6 陈刚;林新富;梁继兴;林丽香;沈晓丽;;过氧化物酶体增殖物激活受体γ(PPARγ)基因多态性与老年男性骨质疏松症相关性研究[A];2008中国医师协会内分泌代谢科医师分会年会论文汇编[C];2008年
7 李洁;戴爱国;胡瑞成;朱黎明;王梅芳;;PPARγ影响γ-谷氨酰半胱氨酸合成酶活性及表达在大鼠慢性阻塞性肺疾病中的作用[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年
8 管又飞;;脂质过氧化物体增殖物激活受体γ(PPAR γ)与糖尿病肾病[A];中华医学会肾脏学分会2004年年会暨第二届全国中青年肾脏病学术会议专题讲座汇编[C];2004年
9 孙莉;尚进林;梁浩;程焱;;PPAR全激动剂对小鼠局灶性脑缺血再灌注损伤的保护作用[A];第十一届全国神经病学学术会议论文汇编[C];2008年
10 ;Endothelial PPARγmediates anti-inflammatory actions of rosiglitazone through dissociation of NF-κB[A];中国生理学会心血管生理学术研讨会论文集[C];2011年
相关重要报纸文章 前3条
1 徐铮奎;发现PPAR拮抗剂[N];医药经济报;2012年
2 曾凡新邋林敏;PPAR激动剂类抗糖尿病药研发喜忧参半[N];中国医药报;2007年
3 袁松范;开发PPAR多通道激动剂须谨慎[N];中国医药报;2006年
相关博士学位论文 前10条
1 刘炳婷;SUMO特异性蛋白酶1调控脂肪形成的作用及分子机制[D];上海交通大学;2014年
2 陈宏;巨噬细胞PPARγ对皮肤伤口愈合的作用研究[D];第三军医大学;2015年
3 王伶;高静水压刺激对血小板活化的影响及PPARγ的保护作用的研究[D];南昌大学;2008年
4 孙晶;PPARγ1对系膜细胞外基质生成的抑制作用及其机制[D];复旦大学;2004年
5 邱龙新;醛糖还原酶通过调控肝代谢性核受体PPARα的磷酸化及活性影响脂质稳态[D];厦门大学;2009年
6 杨策;PPARγ基因沉默对细胞炎症反应的调控作用[D];第三军医大学;2005年
7 周波;PPAR β/δ对热预处理血管内皮细胞抗氧化损伤的保护作用及机制研究[D];中南大学;2012年
8 丁乃峥;PPARδ在大鼠和小鼠早期妊娠子宫中的表达与调节[D];东北农业大学;2002年
9 杨晓波;PPARβ与MMP-9参与蛛网膜下腔出血后早期脑损伤的机制研究[D];重庆医科大学;2014年
10 周吉银;小檗碱降糖调脂作用与PPARs/P-TEFb信号转导通路的关系[D];第三军医大学;2008年
相关硕士学位论文 前10条
1 曹智丽;过氧化物酶增殖物激活受体α(PPARα)在大鼠酒精性肝病发生过程中的变化[D];河北医科大学;2015年
2 宋石;miR-27a通过靶向调控PPARγ对酒精诱导大鼠BMSC分化的影响[D];郑州大学;2015年
3 邹佳楠;PPAR-γ在IgA肾病发生中的作用及其机理研究[D];复旦大学;2014年
4 陶晓燕;PPAR δ激动剂和siRNA对大鼠骨髓基质干细胞及成骨细胞分化和矿化的作用研究[D];安徽医科大学;2015年
5 于飞;新型PPARγ激动剂对人肾癌细胞增殖抑制及其机制的研究[D];中国人民解放军军事医学科学院;2015年
6 何修界;PPARγ激活对GDM小鼠胎盘脂肪酸运输蛋白表达水平的影响[D];安徽医科大学;2015年
7 魏璇;PPARγ通过对RUVBL2表达调控影响脂联素分泌的研究[D];华中农业大学;2015年
8 游洁冰;PPARγ激动剂、胰岛素通过上调负性炎性因子TIPE2的表达抑制高糖、Aβ1-40引起的炎性反应及神经细胞调亡[D];山东大学;2015年
9 刘常为;CTGF、COL-I、PPARγ在卵巢细胞外基质的表达及与多囊卵巢综合征的关系[D];暨南大学;2015年
10 曹小洁;TLR4通过PPARγ下调ABCG1表达促进血管平滑肌细胞内炎症反应及脂质沉积[D];第三军医大学;2015年
,本文编号:1866418
本文链接:https://www.wllwen.com/yixuelunwen/mjlw/1866418.html