内质网源性转录因子CHOP在肾脏缺血再灌注损伤中的作用和机制研究
[Abstract]:Acute kidney injury (AKI) is a common clinical syndrome caused by a variety of diseases. It refers to the sudden deterioration of renal function caused by the damage of kidney structure or function. Ischemia reperfusion injury (IRI) is one of the main causes of acute kidney injury and has a high incidence. Morbidity and mortality are accompanied by a series of cellular events, including cell necrosis, apoptosis, infiltration of inflammatory cells and release of active mediators, leading to tissue damage.
Endoplasmic reticulum (ER) is an important organelle in eukaryotic cells. It plays an important role in the synthesis and transport of proteins, glycosylation modification of proteins and the storage and distribution of calcium ions. Endoplasmic reticulum stress (ERS) is a state of endoplasmic reticulum stress (ERS) in which misfolded and unfolded proteins accumulate in the endoplasmic reticulum.
Renal ischemia-reperfusion injury is a common stress disease caused by renal dysfunction of blood supply. Glaumann et al. proposed in the 1970s that restoring the blood supply of the kidney after ischemia could aggravate the original injury caused by ischemia alone, and pointed out that the pathogenesis of ischemia-reperfusion injury is based on the impairment of local energy metabolism. It has been proved that renal ischemia-reperfusion injury is closely related to endoplasmic reticulum stress. In this process, tissue ischemia-hypoxia, glucose/nutrient deficiency, ATP depletion, large amount of free radicals production and calcium homeostasis damage can cause endoplasmic reticulum dysfunction, triggering. Endoplasmic reticulum stress. Excessive endoplasmic reticulum stress aggravates ischemia-reperfusion injury by destroying calcium homeostasis and inducing apoptosis, but its specific mechanism has not been elaborated in detail. The expression of owth arrest and DNA damage inducible 153 (GADDl53) was elevated, while the expression of caspase-11 was elevated, resulting in damage to renal function.
In this study, we established a renal ischemia-reperfusion injury model in wild type mice and CHOP knockout mice to explore the specific role and mechanism of CHOP in renal ischemia-reperfusion injury, and further cultured human renal tubular epithelial cells (HK-2) and human umbilical vein endothelial cells (HUVEC) in vitro and established a hypoxia-reoxygenation injury model. The important role of CHOP and its molecular mechanism provide scientific basis for elucidating the pathogenesis of acute ischemic renal injury and searching for new therapeutic targets.
1. experimental method
1.1 experimental animals
CHOP knockout mice were imported from Jackson Laboratory of USA. Adult male wild type mice weighing 22-26 g and CHOP knockout mice were used in this experiment. The experimental animals were fed day and night for 12 hours and fed free water and diet.
1.2 renal ischemia-reperfusion injury model
After anesthesia with sodium pentobarbital (60 mg/kg), the animals were placed on the operating table equipped with a thermostat. During the whole experiment, the body temperature was controlled at about 36 C. The right kidney was removed through a median abdominal incision, and the left renal artery and vein were clamped with a protective microvascular clip for 25 minutes. Left renal artery and vein were not clamped. Blood samples were taken from abdominal aorta and kidney tissues were taken for further examination 24 hours after ischemia and reperfusion.
1.3 bone marrow transplantation
The recipients were irradiated with cobalt 60 twice at a total dose of 10.5 Gy at intervals of 4 hours. Two hours after irradiation, bone marrow cells were extracted from the donor and injected into the recipient by 1 *107 cells per caudal vein. A renal ischemia-reperfusion injury model was established 30 days after bone marrow transplantation.
1.4 cell culture and anoxia reoxygenation (HR) model
Human renal tubular epithelial cells (HK-2) and human umbilical vein endothelial cells (HUVEC) were cultured in DMEMs containing 10% fetal bovine serum and placed in incubators with 37 C and 5% CO2. The cells were placed in 6-well plates with 5 105 cells/pores. According to the experimental scheme, the cells were placed in normal (5% CO2, 21% O2 and 74% N2) and hypoxic (5% CO2, 1% O2 and 94% N2).
Construction of 1.5siRNA interference
The siRNA of CHOP was synthesized, purified and annealed by Yingjie Biotechnology Company, USA. The specific sequence of siRNA synthesis was GCUAGGAAUGAATT, UUCUCUUCAGCUAGCTT.HK-2 cells and HUVECs were transfected with Lipofectamin 2000 at 80nM plasmid concentration.
2. experimental results
2.1CHOP mediates apoptosis in renal ischemia-reperfusion injury in mice
Expression of CHOP and cleaved caspase-3 protein in 2.1.1 kidneys after IR
Compared with the control group, the expression of cleaved caspase-3 protein increased at the beginning of CHOP 3 hours after IR, reached the peak at 6 hours after reperfusion, and lasted for 24 hours, which was significantly higher than that of the control group (p0.05).
Cleaved caspase-3 protein expression and survival rate, renal function and pathological changes after 2.1.2CHOP knockout
Changes of cleaved caspase-3 protein expression: The expression of cleaved caspase-3 protein in CHOP knockout mice 6 hours after IR was lower than that in wild type mice (p0.05).
Survival rate: the survival rate of CHOP knockout mice after IR (80%) was significantly higher than that of wild type mice (0%) (P0.05).
Comparison of renal function: CHOP knockout mice 24 hours after IR serum creatinine, blood urea nitrogen were significantly lower than wild type mice (p0.05).
Pathological comparison: the pathological changes of CHOP knockout mice were significantly reduced at 24 hours after IR (P0.05).
2.1.3CHOP knockout reduces IR damage by affecting renal microcirculation perfusion
CHOP knockout significantly improved the early microcirculatory perfusion of ischemic kidneys, thereby reducing the renal ischemia-reperfusion injury in mice compared with wild-type mice after IR.
2.2 Bone marrow transplantation confirms that CHOP mediates apoptosis in IR in renal innate cells rather than in bone marrow-derived immune cells
Changes in survival rate after IR in 2.2.1 four groups of bone marrow transplant mice
Survival rate of four groups of bone marrow transplantation mice after IR observation 7 days, bone marrow transplantation WT WT mice survival rate (0%) and bone marrow transplantation CHOP -/- WT mice survival rate (0%) compared with no significant difference (p0.05); bone marrow transplantation WT CHOP -/- mice survival rate (80%) and bone marrow transplantation CHOP -/- CHOP /- mice survival rate (70%) compared with no significant difference. Difference (P0.05).
Changes in renal function after 2.2.2 IR in four groups of bone marrow transplant mice
Comparison of renal function: There was no significant difference in serum creatinine and blood urea nitrogen between bone marrow transplanted WT WT mice and bone marrow transplanted CHOP -/- WT mice 24 hours after IR (p0.05); there was no significant difference in serum creatinine and blood urea nitrogen between bone marrow transplanted WT CHOP -/- mice and bone marrow transplanted CHOP -/ CHOP -/- mice 24 hours after IR (p0.05).
Pathological changes of 2.2.3 four groups of bone marrow transplantation mice after IR
Pathological comparison: BMT WT WT mice and BMT CHOP -/- WT mice had no significant difference in pathological changes 24 hours after IR (p0.05); BMT WT CHOP -/- mice and BMT CHOP -/- mice, there was no significant difference in pathological changes 24 hours after IR (p0.05).
2.3, CHOP mediated apoptosis in renal tubular epithelial cells and endothelial cells.
Injury of renal tubular epithelial cells induced by 2.3.1 hypoxia reoxygenation
LDH level: Compared with the control group, the level of LDH in cell supernatant increased 6 hours after HR and continued to increase to 24 hours after reoxygenation (p0.05).
CHOP protein expression: compared with the control group, HR increased after 6 hours, and increased to 24 hours (P0.05).
Cleaved caspase-3 protein expression: compared with the control group, 6 hours after HR increased, continued to increase to 24 hours (p0.05).
Endothelial cell injury induced by 2.3.2 hypoxia reoxygenation
LDH level: Compared with the control group, the level of LDH in cell supernatant increased 6 hours after HR and did not decrease significantly until 24 hours after reoxygenation (p0.05).
CHOP protein expression: Compared with the control group, HR increased at 6 hours and remained unchanged until 24 hours after reoxygenation (p0.05).
Cleaved caspase-3 protein expression: compared with the control group, HR increased at 6 hours and did not decrease significantly until 24 hours after reoxygenation (p0.05).
2.3.3CHOP gene silencing significantly alleviated HR induced renal tubular epithelial cell injury
LDH level: Compared with HR 24 hours group, CHOP siRNA significantly reduced the injury of renal tubular epithelial cells after HR, and the LDH level in cell culture supernatant decreased significantly (p0.05).
CHOP siRNA significantly inhibited the expression of CHOP protein in renal tubular epithelial cells induced by HR (P0.05).
CHOP gene silencing significantly inhibited the expression of cleaved caspase-3 protein in renal tubular epithelial cells 24 hours after HR (p0.05).
2.3.4CHOP gene silencing significantly alleviated endothelial cell injury induced by HR
LDH level: Compared with HR6-hour group, CHOP siRNA significantly reduced the injury of HR endothelial cells, and LDH level in cell culture supernatant decreased significantly (p0.05).
CHOPsiRNA significantly inhibited HR induced CHOP protein expression in endothelial cells (P0.05).
CHOP gene silencing significantly inhibited the expression of cleaved caspase-3 protein in endothelial cells 6 hours after HR (P0.05).
3. conclusion
The activation of CHOP in intrinsic cells of kidney plays an important role in mediating apoptosis and impairment of renal function in IR injury of kidney.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R692.5
【相似文献】
相关期刊论文 前10条
1 金梅良;CHOP治疗NHL致肿瘤溶解综合症死亡1例[J];肿瘤防治研究;1997年05期
2 李虎生;张华;陶晓明;;利妥昔单抗联合CHOP方案治疗26例B细胞性淋巴瘤的临床分析[J];华夏医学;2009年03期
3 李涛;苏炳光;凌华晃;蔡茂德;吴祥成;;CHOP和CHOEP方案治疗非霍奇金淋巴瘤的临床观察[J];中华肿瘤防治杂志;2007年13期
4 向华,王坚,孙孟红,陆磊,水若鸿,朱雄增;黏液样/圆细胞型脂肪肉瘤石蜡包埋组织中FUS-CHOP融合基因检测的临床病理学意义[J];中华病理学杂志;2005年01期
5 谢哲,黄达仁;CHOP方案治疗恶性淋巴瘤32例临床分析[J];海南医学;2005年05期
6 张静;徐敬根;;美罗华联合CHOP方案治疗B细胞性非霍奇金淋巴瘤疗效观察[J];当代医学;2011年10期
7 黎军和;氟达拉滨、CAP和ChOP方案治疗938例初治B期和C期慢性淋巴细胞白血病疗效的随机比较[J];国外医学.内科学分册;2002年10期
8 黄春晖;孙守金;谢凤玲;;放疗联合CHOP(或类似方案)化疗治疗鼻腔非霍奇金淋巴瘤12例疗效观察[J];临床医药实践;2009年17期
9 黄春晖;孙守金;谢凤玲;;放疗联合CHOP(或类似方案)化疗治疗鼻腔非霍奇金淋巴瘤12例疗效观察[J];临床医药实践;2009年18期
10 林友;;CHOP-R方案联合治疗复发性弥漫大B细胞性淋巴瘤六例疗效观察[J];海南医学;2010年10期
相关会议论文 前10条
1 赵胜;陈欣林;田志云;Jack Rychik;;CHOP评分诊断双胎输血综合征的应用研究[A];中国超声医学工程学会第三届全国妇产及计划生育超声医学学术会议论文汇编[C];2010年
2 王晓雪;李艳;;美罗华联合CHOP方案与CHOP方案治疗Ⅲ、Ⅳ期弥漫大B细胞性淋巴瘤的临床对比研究[A];全国中西医结合血液学学术会议论文汇编[C];2010年
3 ;The Effect of Endoplasmic Reticulum Stress Protein CHOP on Cyclosporine A-induced Injury of Glomerular Endothelial Cells[A];第八届海峡两岸心血管科学研讨会论文集[C];2011年
4 马孝甜;孙丽洲;;子痫前期内质网应激相关蛋白CHOP/GADD153的表达及其意义[A];中华医学会第三次全国妊娠期高血压疾病学术研讨会论文汇编[C];2011年
5 宋娟;;美罗华联合CHOP方案治疗弥漫性大B细胞性淋巴瘤的护理[A];全国护理教育研讨会暨第2次护理学院(校)长论坛论文集[C];2010年
6 李光乾;王海萍;;惊厥持续状态幼年大鼠海马中GRP78、CHOP的表达及依达拉奉对其影响(摘要)[A];2011年浙江省医学会儿科学分会学术年会暨儿内科疾病诊治新进展国家级学习班论文汇编[C];2011年
7 张立;罗百灵;何白梅;袁婷;胡成平;;HO-1对香烟烟雾提取物诱导的支气管上皮细胞凋亡及CHOP表达的调节作用[A];中华医学会呼吸病学年会——2011(第十二次全国呼吸病学学术会议)论文汇编[C];2011年
8 管忠震;;恶性淋巴瘤的治疗进展[A];中华医学会第八次全国血液学学术会议论文汇编[C];2004年
9 王亚兰;王晓红;于焕欣;;沙利度胺联合CHOP方案治疗52例侵袭性非霍奇金淋瘤临床对照研究[A];第十一届中国抗癌协会全国淋巴瘤学术大会教育论文集[C];2009年
10 宋小英;潘建兰;;CHOP方案化疗治疗骨原发性非何杰金淋巴瘤的护理[A];2006年贵州省医学会骨科学分会学术年会论文汇编[C];2006年
相关重要报纸文章 前10条
1 本报特约撰稿人 栾雪梅;大剂量化疗+干细胞移植优于常规化疗[N];医药经济报;2004年
2 驻京记者 贾岩;治疗年轻DLBCL患者,哪种方案好[N];医药经济报;2010年
3 刘元江;利妥昔单抗联合CHOP治疗弥漫大B细胞淋巴瘤的成本-效果分析[N];医药经济报;2005年
4 楼南星;年少不轻狂 网络写精彩[N];经理日报;2003年
5 徐茜茜 吴静 胡泽团;我是CCS一员[N];中国水运报;2004年
6 本报记者 慕欣;如何选择B/T——LBL/ALL诊治方案[N];医药经济报;2010年
7 古今;手表 年轻风潮挡不住[N];中国矿业报;2002年
8 天津医科大学附属肿瘤医院淋巴肿瘤科主任 王华庆;恶性淋巴瘤 诊治主旋律变化进行时[N];健康报;2010年
9 张化;欧洲珠宝市场变脸[N];国际经贸消息;2001年
10 青锋;抗非何杰金淋巴瘤单克隆抗体显功效[N];医药经济报;2001年
相关博士学位论文 前10条
1 董彪;内质网源性转录因子CHOP在肾脏缺血再灌注损伤中的作用和机制研究[D];吉林大学;2014年
2 吴婷婷;X盒结合蛋白1在糖尿病心肌病心肌细胞凋亡中的作用机制研究[D];山东大学;2012年
3 景宝;PTEN敲除小鼠前列腺癌模型的蛋白组学分析靶基因Chop的确定及诱导性表达c-myc细胞系的建立[D];天津医科大学;2013年
4 张亚妮;Zhangfei基因在细胞内质网应激反应中的生物功能研究[D];西北农林科技大学;2010年
5 李惠玲;大鼠视网膜再灌注损伤致细胞凋亡的内质网应激机制研究[D];中南大学;2006年
6 申向民;鼠脑缺血再灌后神经元凋亡的内质网应激机制及依达拉奉的影响[D];中南大学;2007年
7 曲鹏;NGF和CGRP对局灶性脑缺血再灌注大鼠皮质神经元P38MAPK,CHOP及IL-1β表达的调节作用[D];中国医科大学;2007年
8 刘光辉;内质网应激在糖尿病肾损害中的作用机制研究[D];山东大学;2010年
9 徐利明;原发纵隔B细胞淋巴瘤综合治疗及调强放疗结果和剂量分析[D];北京协和医学院;2013年
10 熊学华;载脂蛋白E对创伤性颅脑损伤后内质网应激的影响及意义[D];重庆医科大学;2013年
相关硕士学位论文 前10条
1 王晓雪;美罗华联合CHOP方案与CHOP方案治疗Ⅲ、Ⅳ期弥漫大B细胞性淋巴瘤的临床对比研究[D];中国医科大学;2010年
2 李楠;蛋白酶体抑制剂硼替佐米通过内质网应激调亡途径CHOP诱导人脑胶质瘤细胞凋亡的机制研究[D];山西医科大学;2011年
3 杨宁宁;美罗华联合CHOP方案与CHOP方案治疗B细胞非霍奇金淋巴瘤的临床对比研究[D];山东大学;2012年
4 赵振慧;CHOP方案一线治疗维、汉不同亚型DLBCL的疗效观察[D];新疆医科大学;2013年
5 王丽玲;FND与CHOP方案治疗惰性淋巴瘤的临床分析[D];新疆医科大学;2010年
6 童玉娜;内质网源性转录因子CHOP在缺氧复氧诱导肾小管上皮细胞炎症反应中的作用和机制研究[D];第三军医大学;2011年
7 黄若新;不同化疗方案治疗初治弥漫大B细胞淋巴瘤的疗效观察[D];福建医科大学;2010年
8 胡炳俊;转hIAPP和CHOP基因调控小鼠β细胞凋亡的研究[D];中国农业科学院;2013年
9 周哲;一氧化碳和内质网应激蛋白CHOP在环孢霉素A引起的肾小球内皮细胞损伤中的作用[D];宁夏医科大学;2011年
10 裴菲;内质网应激蛋白(BiP、CHOP)在多囊卵巢综合征患者血白细胞中表达的研究[D];安徽医科大学;2013年
本文编号:2219616
本文链接:https://www.wllwen.com/yixuelunwen/mjlw/2219616.html