PKCζ与Ⅱa型组蛋白去乙酰化酶相互作用调节前列腺癌细胞Warburg效应及其机制
[Abstract]:1. Background Metabolism is one of the most important characteristics of cancer, which is closely related to the occurrence and development of tumor. Tumor cells absorb glucose to produce energy through glycolysis pathway in both aerobic and anaerobic conditions to meet the needs of rapid growth. The Warburg effect is not only limited to changes in glycolysis and tricarboxylic acid cycles, but also to metabolic reprogramming of fatty acids, glutamine, serine, and mono-carboxylic units in tumor cells. Therefore, further study on the mechanism of Warburg effect and its relationship with tumor development will not only help to reveal the intrinsic relationship between tumor metabolic changes and tumor progression, but also seek highly specific metabolic markers for clinical diagnosis and targeted treatment of tumor metabolism. New therapeutic strategies offer new insights and opportunities. The aerobic glycolysis (Warburg effect) shown by tumor cells weakens the oxidative phosphorylation (OXPHOS) pathway in mitochondria, while the metabolic pathways such as aerobic glycolysis and pentose phosphate pathway (PPP) to form nucleotides increase. Strong. This abnormal glycometabolic transformation promotes the selective growth of tumor cells. It not only provides energy (ATP), biological macromolecular precursors (amino acids, nucleotides, etc.) and coenzymes (Nicotinamide adenine dinucleotide phosphate NADPH) for rapidly proliferating tumor cells, but also forms tumor cells through Warburg effect. Acidified microenvironment is conducive to the growth, invasion and metastasis of tumor cells. In addition, the metabolic transformation of tumor cells from mitochondrial oxidative phosphorylation to glycolysis reduces the production of reactive oxygen species (ROS) and thus reduces the toxicity of ROS to tumor cells. Proliferation, apoptosis resistance, unlimited replication potential, insensitivity to growth signals, persistent angiogenesis, tissue invasion and metastasis, and immune surveillance and escape constitute the eight new characteristic markers of tumor. Acquired deletion or mutation, loss of tumor suppressor genes, changes in the activity or expression of key enzymes in the glycolysis pathway in tumor cells, loss of respiratory chain function or decreased oxidative phosphorylation due to mitochondrial mtDNA mutation, high expression of hypoxia-inducible factors in tumor cells, activation of downstream multiple tumors, and adaptation to hypoxia microenvironment Although Warburg effect is one of the most important characteristics of tumors, tumor cells adapt to the Warburg effect of hypoxic microenvironment by mutation of these genes and activation of key signaling pathways. The role of other regulatory molecules and key signaling pathways closely related to tumorigenesis and progression in the regulation of the Warburg effect is still unclear. PKC belongs to a family of serine/threonine proteins activated by Receptor Tyrosine kinase (RTK) and G-protein coupled receptor (GPCR). Kinases, including three subgroups, namely Ca2+ and DAG-dependent typical PKC (PKC-a, -beta, -gamma); DAG-dependent but Ca2+ independent PKC (PKC-delta, -e, -_, -theta); DAG and Ca2+ independent atypical PKC (PKC-_, -_). PKC family plays an important role in cell growth and metabolism, mitosis and proliferation, cytoskeleton protein remodeling. One of the atypical subtypes plays an important role in integrating extracellular signal stimuli and regulating key signaling pathways related to cell growth, metabolism and cell polarity. Programming. Previous studies have shown that epigenetic changes regulated by histone deacetylases (HDACs) play an important role in tumor proliferation, migration, genome stability, angiogenesis and tumor apoptosis. They are mainly composed of Class I, Class II and Class III HDACs. Recently, HDACs have been involved in tumor metabolism. However, it is still unclear whether Class II HDACs, which are closely related to tumor proliferation and progression, are involved in the regulation of tumor metabolism, especially glucose metabolism. This study not only helps to understand the role and molecular mechanism of PKC_and Class II a HDACs in the growth of prostate cancer, but also lays a foundation for further discovery of new targets for regulating tumor metabolism. 3. Research methods This study mainly through overexpression (plasmid) or interference. (si RNA) strategy to investigate the role of PKC_or II a HDACs in regulating the expression of intermediate and end products of aerobic glycolysis pathway and their molecular mechanisms in prostate cancer cells; the co-location and interaction of PKC_and II a HDACs in the nucleus were confirmed by immunofluorescence staining and immunoprecipitation PKC promotes the growth of prostate cancer cell DU145 and Warburg effect. Overexpression of PKC promotes the growth of prostate cancer cell DU145 and glucose uptake and lactic acid secretion. On the contrary, it knocks down prostate cancer cells. The expression of PKC_significantly decreased the growth, glucose uptake and lactic acid secretion of prostate cancer DU145 cells. 2. PKC_promoted the expression of Warburg effect-related proteins in prostate cancer cells. Real-time quantitative RT-PCR and Western blot analysis showed that the over-expression of PKC_promoted the glycolysis of prostate cancer DU145 cells. The expression of related proteins, glucose and lactate transporters (HK II, PFKP, MCT4, CD 147) was significantly decreased by knocking down the expression of endogenous PKC_in prostate cancer DU145 cells, while the expression of glucose and lactate transporters (HK II, PFKP, MCT4, CD 147) was significantly decreased by knocking down the expression of endogenous PKC_. Overexpression of type II a HDACs (HDAC4,5,7) reduces the growth, glucose uptake and lactic acid secretion of prostate cancer DU145 cells. Studies have shown that there is a feedback loop between HDACs and cell metabolism. The effects of type II a HDACs (HDAC4,5,7) on the growth and glycolysis of tumor cells were studied. HA-HDAC4,5,7 was transfected into prostate cancer DU145 cells. The results showed that overexpression of HA-HDAC4,5,7 significantly decreased the growth and survival of DU145 cells. In addition, lactate transporter inhibitor a-CHCA was added to knock down endogenous HDAC7 expression DU145 cells to antagonize the growth-promoting effect of endogenous HDAC7 knockdown. Finally, we further examined the effects of type II a HDACs on glucose uptake and lactate secretion. Expression of HA-HDAC4,5,7 in prostate cancer cells DU145 and PC-3M decreased glucose uptake and lactic acid secretion in a time-dependent manner, suggesting that type II a HDACs may inhibit tumor cell growth by negatively regulating glycolysis. 4. Overexpression of type II a HDACs decreased the expression of Warburg effect-related proteins in prostate cancer DU145 cells. L-time quantitative RT-PCR showed that the overexpression of HA-HDAC4,5,7 in prostate cancer DU145 cells significantly decreased the expression of glycolysis-related proteins, glucose and lactate transporters (HKII, PFKP, MCT4, CD 147) in prostate cancer DU145 cells, and Western blot showed that the overexpression of HA-HDAC4,5,7 in addition to significantly reducing the above-mentioned glycolysis-related proteins. PKC_and II a HDACs were co-localized in the nucleus and interacted with each other, and knocking down the expression of PKC_could significantly reduce the phosphorylation level of the nucleus key sites of HDAC. Immunofluorescence staining showed that endogenous PKC_could be associated with type II a HDACs. HDAC4,5,7 were co-localized in the nucleus. Immunocoprecipitation further showed that HDAC4,5,7 could interact directly with PKC. In addition, knocking down the expression of PKC could significantly reduce the phosphorylation level of the key sites of HDAC exocytosis. Inhibitory effect of HDAC7 on the expression of glycolysis-related genes.6.HDAC7 could antagonize the growth-promoting effect of PKC_on DU145 cells.The results showed that knocking down the expression of endogenous PKC_significantly inhibited the growth of DU145 cells, while knocking down the expression of HDAC7 significantly promoted the growth of DU145 cells. Tapping down the expression of endogenous HDAC7 may antagonize the inhibition of endogenous PKC_on the growth of DU145 cells. 5. Conclusion PKC_can regulate the expression of Warburg-related genes and the secretion of lactic acid in prostate cancer cells by interacting with type II a HDACs. This study will promote the growth of tumor cells. It lays a foundation for further study of the relationship between the changes of glucose metabolism and the growth and progression of prostate cancer, and provides a new potential target for the diagnosis and treatment of prostate cancer.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R737.25
【相似文献】
相关期刊论文 前10条
1 黄马羊;宋涛;黎晓;;3'-大豆苷元磺酸钠对前列腺癌细胞的影响[J];赣南医学院学报;2010年03期
2 欧阳斌;张元原;;科学家鉴定出前列腺癌细胞的来源[J];中华男科学杂志;2010年10期
3 卫华;;前列腺癌细胞收集的改进[J];中国医疗器械信息;2011年12期
4 麦凤鸣,梁若斯,胡建波;前列腺癌细胞凋亡相关基因表达及其意义[J];广州医学院学报;2002年02期
5 张星海,杨贤强;茶多酚及儿茶素对前列腺癌细胞生长的抑制作用[J];茶叶;2003年03期
6 王共先,刘伟鹏,汪泱,傅斌,黄学明,陈庆科,袁铿,胡银英;前列腺癌细胞的原代和传代培养的研究[J];江西医学检验;2004年01期
7 龙智,蒋先镇;外源性一氧化氮对前列腺癌细胞作用的研究[J];中国男科学杂志;2005年02期
8 田媛,秦玺,胡宝成,黄翠芬;抗前列腺癌细胞特异抗体库的构建及特异结合抗体的筛选[J];中国肿瘤生物治疗杂志;2005年01期
9 张岩,刘贤锡,张冰,胡海燕,龚磊;鸟氨酸脱羧酶基因反义RNA对前列腺癌细胞生长的抑制作用[J];中国生物化学与分子生物学报;2005年01期
10 李璐;;药用菌灵芝可切断前列腺癌细胞的血液供应[J];国外医学.药学分册;2006年03期
相关会议论文 前10条
1 陆斌;赵善超;邓鹏;姜勇;;晚期糖基化终末产物受体存在异常定位并能促进前列腺癌细胞的增殖[A];中国病理生理学会受体、肿瘤和免疫专业委员会联合学术会议论文汇编[C];2010年
2 赵善超;贾立永;郑少斌;毛向明;杜跃军;;晚期糖基化终产物受体在前列腺癌细胞中的表达[A];第十五届全国泌尿外科学术会议论文集[C];2008年
3 杜俊华;姜昊文;关明;丁强;;基因芯片筛查前列腺癌细胞系抗甲基化干预后的目标基因[A];第十六届全国泌尿外科学术会议论文集[C];2009年
4 吕家驹;高德轩;夏庆华;张辉;;丙戊酸对前列腺癌细胞裸鼠移植瘤生长抑制的实验研究[A];2007年华东六省一市泌尿外科学术会议暨山东省泌尿外科年会论文汇编[C];2007年
5 黄海;杜涛;黄健;许可慰;尹心宝;林天歆;江春;韩金利;郭正辉;;高效抑制核因子κ-B的茎环RNA基因序列的获得[A];第十五届全国泌尿外科学术会议论文集[C];2008年
6 邓勇;张炜飞;张成斌;林金明;;液相色谱串联质谱法定量检测前列腺癌细胞肌氨酸代谢[A];中国化学会第29届学术年会摘要集——第38分会:质谱分析[C];2014年
7 解杰;陈安民;郭风劲;王建超;廖晖;柳昊;;前列腺癌细胞体外骨转移立体模型的构建[A];中华医学会疼痛学分会第八届年会暨CASP成立二十周年论文集[C];2009年
8 赵福军;夏术阶;;脂质体介导靶向pPSMApromoter/enhancer-UPRT/5-FU自杀基因系统对前列腺癌细胞的作用研究[A];2007年华东六省一市泌尿外科学术会议暨山东省泌尿外科年会论文汇编[C];2007年
9 沈默;陶志华;周平;王彩虹;陈俐丽;;免疫磁珠法检测外周血微转移前列腺癌细胞的方法学探讨[A];2007年浙江省医学检验学学术年会论文汇编[C];2007年
10 宫丽华;方伟岗;;人前列腺癌细胞表达的P2Y嘌呤受体亚型特性及功能研究[A];第四届中国肿瘤学术大会暨第五届海峡两岸肿瘤学术会议论文集[C];2006年
相关重要报纸文章 前2条
1 田香;辣椒素能杀前列腺癌细胞[N];卫生与生活报;2007年
2 ;新方法可搜出隐藏的前列腺癌细胞[N];新华每日电讯;2006年
相关博士学位论文 前10条
1 田聆;前列腺癌细胞中的PTEN的多重miRNA调控研究[D];复旦大学;2012年
2 刘永青;自噬在天然小分子化合物促进前列腺癌细胞死亡中的作用及其机制研究[D];山东大学;2015年
3 温冬华;前列腺癌细胞SUMO化蛋白的发现和功能研究[D];上海交通大学;2014年
4 陈勇;转录因子RUNX3对前列腺癌细胞恶性表型的影响[D];第四军医大学;2015年
5 温明新;UBE2T促进前列腺癌细胞上皮间质转化及侵袭转移的作用机制研究[D];山东大学;2015年
6 李涛;BDNF/TrkB通路对前列腺癌细胞上皮向间质转化、迁移、侵袭、失巢凋亡的影响及分子机制的体外研究[D];华中科技大学;2015年
7 杨俊;糖原合酶激酶3β调控前列腺癌细胞死亡的机制研究[D];华中科技大学;2010年
8 庞博;前列腺癌细胞系分泌蛋白质组比较及相关蛋白功能研究[D];中国人民解放军军事医学科学院;2008年
9 郭琼;miR-375及MTDH在前列腺癌细胞中的功能研究[D];中南大学;2013年
10 蒋汉明;以蛋白酶体为靶点的地钱素M诱导前列腺癌细胞死亡的机制研究[D];山东大学;2013年
相关硕士学位论文 前10条
1 刘莹;~(131)Ⅰ标记新型靶向FGF8分子探针的制备及其对前列腺癌细胞体外作用影响的实验研究[D];宁夏医科大学;2015年
2 翟红运;胚胎干细胞分泌因子对前列腺癌细胞作用的研究[D];山东大学;2015年
3 梅_g;miR-27a对前列腺癌细胞迁移和侵袭的影响[D];哈尔滨工业大学;2015年
4 雷咏;二甲双胍抑制前列腺癌细胞的迁移和侵袭并增加对紫杉醇敏感性的研究[D];广西医科大学;2015年
5 张焘;MiR-101调控前列腺癌细胞CRMP4的表达及其机制的初步研究[D];南昌大学医学院;2015年
6 唐乃玲;冷冻消融对前列腺癌细胞转化生长因子-β及smad通路影响的实验研究[D];天津医科大学;2015年
7 李婷婷;SP-1/3在前列腺癌细胞DU145和LNCaP中的表达水平及对PP2A-Aα的调控作用[D];湖南师范大学;2015年
8 易明;AP-2α和Ets-1在前列腺癌细胞DU145和LNCaP中的表达水平及对PP2A-Aα的调控作用[D];湖南师范大学;2015年
9 皮亚洲;RKIP的克隆、表达及其影响肿瘤细胞迁移和细胞凋亡检测性质初步研究[D];南京大学;2013年
10 李松玉;PKCζ与Ⅱa型组蛋白去乙酰化酶相互作用调节前列腺癌细胞Warburg效应及其机制[D];南方医科大学;2014年
,本文编号:2230557
本文链接:https://www.wllwen.com/yixuelunwen/mjlw/2230557.html