当前位置:主页 > 医学论文 > 生物医学论文 >

血管化组织工程脂肪构建中的巨噬细胞表型转换

发布时间:2018-08-05 15:23
【摘要】:【研究背景】在口腔颌面外科和整形外科领域,肿瘤切除、创伤、感染、先天性萎缩均可导致皮下脂肪层丧失及大体积软组织缺损。软组织缺损不仅影响正常组织功能,还严重影响患者美观和心理状态,因此,理想的可移植的具有生理功能的脂肪组织在颌面外科及整形外科领域有非常大的需求。当前,软组织缺损的修复重建包括自体组织移植,人工合成假体植入等方法,但存在易吸收、供区缺损、手术复杂以及假体生物相容性不足的问题。因此,整形重建外科一直在寻求能够克服上述问题的方法。近年来随着再生医学及组织工程技术快速发展,组织工程方法构建大体积脂肪取得了可喜的进展。然而,由于脂肪组织是高度血管化和高代谢活性的组织,而血运重建是组织再生的基础,要构建组织工程化脂肪组织,尤其是大体积的脂肪组织,必须保证移植物内部尽早获得营养和氧气的供给。血管化不足成为制约构建大体积组织工程脂肪的瓶颈问题。然而,我们对血管化机制的认识仍然不足,为解决血管化的难题,需要从明确血管化的机制入手。既往的脂肪组织工程研究大多聚焦于脂肪间充质干细胞/脂肪前体细胞,内皮祖细胞/内皮细胞,以及影响它们增殖、分化的细胞因子筛选或支架设计;而对脂肪和血管生成中的其他类型细胞,如巨噬细胞,关注较少。近年来随着对巨噬细胞在组织修复和再生中的重要性的认识加深,人们认识到巨噬细胞的功能不仅仅是一种参与非特异性免疫和特异性免疫的的吞噬细胞,在固有免疫应答中发挥重要作用,其在组织器官的发育、内稳态的维持、多种组织器官损伤的修复和再生等生理和病理过程中的作用也受到越来越多的关注。近年来,有学者发现巨噬细胞参与了组织工程脂肪构建中的血管生成和脂肪再生。然而,巨噬细胞是一种具有高度异质性和可塑性的细胞,在不同的局部微环境下,巨噬细胞可极化为不同的表型,分泌多种不同的细胞因子。在脂肪再生和脂肪组织工程领域不同的巨噬细胞表型及其在脂肪再生中的作用,尚无文献报告。综上,本课题拟构建血管化组织工程脂肪组织,在此基础上研究血管生成和脂肪生成中巨噬细胞的分布及表型特点,并深入探讨巨噬细胞及其不同表型在血管化组织工程脂肪构建中的作用,为揭示脂肪再生的机制以及为构建符合临床要求的血管化组织工程脂肪提供理论基础和实验依据。【研究目的】建立大鼠脂肪组织工程模型,通过对模型的改良和优化,探索血管化脂肪再生的合适条件。研究组织工程脂肪构建中巨噬细胞分布及表型变化,分析组织工程室内多种抗炎和促炎细胞因子的微环境;明确巨噬细胞对组织工程室内血管生成和脂肪生成及微环境的影响,对巨噬细胞及表型调控在组织工程脂肪构建中的作用进行了初步探索。【研究方法】1组织工程室脂肪再生模型的构建利用中空的硅胶管作为组织工程室模型,植入大鼠腹股沟,硅胶管内注入FGF-2缓释的Matrigel凝胶支架,比较轴型血管蒂+骨蜡封口组、无血管蒂+脂肪瓣封口组、轴型血管蒂+脂肪垫封口组三种不同的血管化组织工程脂肪构建方法脂肪再生的差异。2组织工程室脂肪再生过程中的巨噬细胞表型转化研究利用实验一构建的大鼠脂肪组织工程室模型,在不同时间点取材,分析组织工程室血管生成和脂肪再生情况,通过免疫组化和免疫荧光技术分析再生过程中巨噬细胞数量及表型的变化,并通过ELISA法对组织工程室内促炎和抗炎细胞因子微环境进行分析。3早期巨噬细胞清除对组织工程室脂肪再生的影响利用大鼠脂肪组织工程室模型,采用脂质体介导的巨噬细胞自杀技术,分析早期巨噬细胞清除对组织工程室内血管生成和脂肪再生的影响,通过免疫组化和免疫荧光技术分析组织工程室内内皮细胞、中性粒细胞、巨噬细胞的分布,以及巨噬细胞的表型情况。并通过ELISA法分析早期巨噬细胞清除对组织工程室内促炎和抗炎细胞因子微环境的影响。【实验结果】三个组6周取材时血管蒂通畅,轴型血管蒂+脂肪垫封口组组织工程室内容物的平均重量和体积最大,血管蒂周围可见大量的成熟脂肪组织,无轴型血管蒂+脂肪垫封口组脂肪生成相对较少,而轴型血管蒂+骨蜡封口组新生组织量最少,主要为纤维结缔组织,几乎看不见脂肪细胞。组织工程室植入后第3天,大量的炎细胞浸润,内皮细胞进入Matrigel凝胶,呈现出血外观,植入后第7天,Matrigel开始部分降解,并被新生结缔组织和毛细血管替代。植入后第14天,Matrigel大部分降解,Matrigel凝胶被新生结缔组织和新生血管替代,未见明显的脂肪生成。植入后第42天,Matrigel完全降解,可见大量的成熟脂肪组织,周围可见结缔组织包膜。Lectin血管内皮染色显示,血管密度明显增加,在2周时达到峰值,随后相对稳定。CD68染色显示,第3天即可见明显巨噬细胞浸润,巨噬细胞密度在第7天到达峰值,随后显著降低。在不同时间点,巨噬细胞均有M1和M2两种表型。M1巨噬细胞比例第3天最后,随后逐渐下降,M2巨噬细胞比例有持续增高的趋势,而M2/M1比值从7-42天整个血管生成脂肪再生阶段持续增加。ELISA检测组织工程室内不同时间点促炎和抗炎细胞因子的分泌水平,促炎细胞因子IL-1β、TNF-α和IL-6整体呈下降趋势,抗炎细胞因子IL-4、IL-10和TGF-β整体呈上升趋势。巨噬细胞清除组4天后组织工程室内巨噬细胞密度较对照组显著降低,14天后巨噬细胞密度恢复正常。进一步分析巨噬细胞表型,发现第14天巨噬细胞清除组M1巨噬细胞所占比例显著高于对照组,M2巨噬细胞比例以及M2/M1比值显著低于对照组。在第4、14和42天,巨噬细胞清除组中性粒细胞密度显著高于对照组。ELISA结果显示,第14天时,促炎细胞因子IL-1β、TNF-α和IL-6的分泌水平氯膦酸二钠组显著高于脂质体组。而抗炎细胞因子IL-4、IL-10和TGF-β的分泌水平氯膦酸二钠组显著低于脂质体对照组。【结论】利用组织工程室模型和血管化体内预构技术,可实现血管化脂肪组织再生。组织工程室为组织再生提供了空间,血管蒂的引入,生物支架材料的植入以及与自体脂肪组织接触,构建了成血管和成脂的微环境,有利于血管生成和脂肪再生。巨噬细胞参与了组织工程室中血管生成和脂肪再生的全过程;在血管生成和脂肪再生的过程中,巨噬细胞经历了从炎症期的促炎M1表型向增殖期的抗炎M2表型的转换,小室微环境也从炎症期的促炎状态向增殖期的抗炎状态转换。通过脂质体介导的巨噬细胞清除技术,证实巨噬细胞在组织工程室的早期血管化和脂肪再生中发挥关键作用。脂质体包裹的氯膦酸二钠能高效清除组织工程室内的巨噬细胞,但这种清除作用在两周后消失;早期巨噬细胞清除会导致组织工程室内的血管化显著延迟,中性粒细胞持续浸润,小室微环境处于持续的炎症状态;早期巨噬细胞清除导致巨噬细胞增殖期从M1向M2表型转换障碍。提示巨噬细胞表型调控,而不是巨噬细胞数量,是决定组织工程室内脂肪再生的关键因素。本研究为大体积组织工程脂肪构建提供了新的思路。在组织工程支架的设计理念上,使设计的生物支架植入体内后有利于巨噬细胞向M2表型转换,或通过导入外源性的细胞因子或细胞的方法,诱导巨噬细胞向M2表型转换,使局部微环境从促炎状态向抗炎状态转变,这可能是未来血管化组织工程脂肪构建的重要策略之一。
[Abstract]:[background] in the field of oral and maxillofacial surgery and orthopedics, tumor resection, trauma, infection, and congenital atrophy can lead to subcutaneous fat layer loss and large volume soft tissue defect. Soft tissue defects not only affect normal tissue function, but also seriously affect the patient's aesthetic and mental state. Therefore, the ideal transplantation has physiological function. There is a great demand for adipose tissue in maxillofacial surgery and orthopedics. At present, the repair and reconstruction of soft tissue defects include autologous tissue transplantation, artificial prosthesis implantation and other methods, but there are problems of easy absorption, donor defect, complex operation, and imbiocompatibility of prosthesis. Therefore, plastic and reconstruction surgery has been seeking ability. In recent years, with the rapid development of regenerative medicine and tissue engineering technology, great progress has been made in the construction of mass fat by tissue engineering. However, as adipose tissue is highly vascularized and highly metabolized, revascularization is the basis of regenerative tissue, and the construction of tissue engineered fat is to be constructed. Tissue, especially large volume adipose tissue, must ensure the early access to nutrition and oxygen supply in the graft. Insufficient vascularization is a bottleneck to constraining the construction of mass tissue engineering fat. However, our understanding of the vascularization mechanism is still insufficient. In order to solve the problem of hemangiarization, the mechanism of vascularization should be defined. Hand. Previous adipose tissue engineering studies mostly focus on adipose mesenchymal stem cells / adipose progenitor cells, endothelial progenitor cells / endothelial cells, and cell factor screening or scaffold design that affect their proliferation and differentiation; and less attention has been paid to other types of cells in fat and angiogenesis, such as macrophages. The understanding of the importance of cells in tissue repair and regeneration has deepened. People realize that the function of macrophages is not only a phagocyte that participates in non specific immunity and specific immunity. It plays an important role in the inherent immune response, the development of the tissues and organs, the maintenance of internal homeostasis, and the repair of a variety of tissues and organs. In recent years, some scholars have found that macrophages are involved in angiogenesis and fat regeneration in tissue engineering fat construction. However, macrophages are highly heterogeneous and plastic cells, and macrophages can be found in different local microenvironments. Polarization is a different phenotype and secretes a variety of different cytokines. There is no literature report on the different phenotype of macrophage and its role in adipose regeneration in the field of adipose regeneration and adipose tissue engineering. To sum up, this topic intends to construct vascularized tissue engineering adipose tissue, on this basis, to study the giant macrophages in angiogenesis and adipose formation. The distribution and phenotypic characteristics of cells and the role of macrophages and their different phenotypes in the construction of vascular tissue engineering fat are discussed in order to reveal the mechanism of fat regeneration and to provide theoretical and experimental basis for the construction of vascularized tissue engineering fat, which is in accordance with the clinical requirements. Through the improvement and optimization of the model, the appropriate conditions for the regeneration of vascularized fat are explored. The distribution and phenotypic changes of macrophages in the construction of tissue engineering fat are studied, and the microenvironment of various anti-inflammatory and proinflammatory cytokines in the tissue engineering room is analyzed, and the angiogenesis, adipose formation and microring of the macrophages in the tissue engineering are clearly defined. The effect of macrophage and phenotypic regulation in the construction of tissue engineering fat was preliminarily explored. [Methods] the construction of 1 tissue engineering room fat regeneration model was constructed using hollow silicone tube as a tissue engineering room model, implanted in rat groin and implanted with FGF-2 sustained-release Matrigel gel stent in silica gel tube. Axial type vascular pedicle + bone wax seal group, no vascular pedicle + fat flap seal group, three different vascular tissue engineering fat construction methods of adipose tissue engineering in the group of adipose tissue engineering fat regeneration in.2 tissue engineering room The changes in the number and phenotype of macrophages in the process of regeneration were analyzed by immunohistochemistry and immunofluorescence, and the microenvironment of proinflammatory and anti-inflammatory cytokines in the tissue engineering room was analyzed by ELISA method, and the early.3 macrophage clearance group was analyzed by the method of immunohistochemistry and immunofluorescence. The effect of fat regeneration in the weaving room was used in the rat adipose tissue engineering room model. The effect of early macrophage clearance on the angiogenesis and fat regeneration in the tissue engineering was analyzed by liposome mediated macrophage suicide technique. The endothelial cells in the tissue engineering were analyzed by immunohistochemistry and immunofluorescence. The distribution of macrophages and the phenotype of macrophages. The effects of early macrophage clearance on the microenvironment of proinflammatory and anti-inflammatory cytokines in the tissue engineering room were analyzed by ELISA method. [experimental results] the blood vessels were patted when three groups were harvested for 6 weeks, and the average volume of tissue engineering in the axial type and fat pad seal group was average. The weight and volume were the largest, and a large number of mature adipose tissue were found around the pedicle. The adipose formation in the non axial vascular pedicle and the fat pad seal group was relatively less, while the axial type and the bone wax seal group had the least new tissue, mainly fibrous connective tissue and almost no adipocytes. A large number of inflammatory cells were immersed in the tissue engineering room third days after implantation. The endothelial cells entered Matrigel gel, showing the appearance of bleeding, seventh days after implantation, Matrigel began to degrade partially, and was replaced by new connective tissue and capillaries. Fourteenth days after implantation, most of Matrigel was degraded and Matrigel gel was replaced by new connective tissue and neovascularization, and no obvious adipose formation was found. Forty-second days after implantation, Matrigel Complete degradation, a large number of mature adipose tissue were visible, and the surrounding connective tissue enveloped.Lectin vascular endothelial staining showed that the blood vessel density increased significantly, reached the peak at 2 weeks, followed by relatively stable.CD68 staining, and the obvious macrophage infiltration was visible on the third day, the peak of macrophage density reached the peak at seventh days, then decreased significantly. At different time points, the proportion of macrophages with two phenotypes of M1 and M2 was third days last, then decreased gradually, and the proportion of M2 macrophages continued to increase, while the M2/M1 ratio continued to increase from the 7-42 days of 7-42 days of angiogenesis in the adipose regeneration stage to detect the proinflammatory and anti-inflammatory cytokines at different time points in the tissue engineering. Secretory level, proinflammatory cytokines IL-1 beta, TNF- alpha and IL-6 overall decreased, anti-inflammatory cytokines IL-4, IL-10 and TGF- beta overall increased. Macrophage density in the tissue engineering room was significantly lower than that of the control group after 4 days of macrophage clearance, and the density of macrophages returned to normal after 14 days. Further analysis of macrophage phenotypes was made. The proportion of M1 macrophages in the fourteenth days of macrophage clearance group was significantly higher than that in the control group. The proportion of M2 macrophages and the ratio of M2/M1 were significantly lower than that of the control group. In the 4,14 and 42 days, the neutrophils density in the macrophage clearance group was significantly higher than that of the control group.ELISA results, and the secretion of proinflammatory cytokines, IL-1 beta, TNF- A and IL-6 at fourteenth days. The level of level chlorphosphonic acid two sodium was significantly higher than that in the liposome group. The secretory level of anti inflammatory cytokine IL-4, IL-10 and TGF- beta was significantly lower than that in the liposome control group. [Conclusion] tissue engineering room model and vascularized preconditioning can be used to regenerate vascular fat group. Tissue engineering room is provided for tissue regeneration. Space, the introduction of vascular pedicle, implantation of scaffold materials and contact with autologous fat tissue, construction of vascular and lipid microenvironment, which is beneficial to angiogenesis and fat regeneration. Macrophages participate in the whole process of angiogenesis and fat regeneration in the tissue engineering room; in the process of angiogenesis and fat regeneration, macrophages Through the transformation of inflammatory M2 phenotype from proinflammatory M1 phenotype to proliferation stage, small chamber microenvironment also converts from inflammatory proinflammatory to proliferative stage to anti-inflammatory state. Through liposome mediated macrophage clearance technology, macrophages play a key role in early vascularization and fat regeneration in tissue engineering. The plastid encapsulated sodium chlorosonate two could efficiently remove macrophages in the tissue engineering room, but this scavenging effect disappeared after two weeks. Early macrophage clearance would lead to significant delayed vascularization in the tissue engineering room, continuous infiltration of neutrophils, and a sustained inflammatory condition in the microenvironment; early macrophage clearance resulted in giant macrophages. The phagocytosis phase transforms from M1 to M2 phenotype. It suggests that the macrophage phenotypic regulation, not the number of macrophages, is the key factor in determining the regeneration of fat in the tissue engineering. This study provides a new idea for the construction of mass tissue engineering fat. In the design concept of tissue engineering scaffold, the designed biological scaffold is implanted in the tissue engineering scaffold. In vivo, it is beneficial for the transformation of macrophages to M2 phenotypes, or by introducing exogenous cytokines or cells, inducing macrophages to convert to M2 phenotypes and change the local microenvironment from proinflammatory to anti-inflammatory state, which may be one of the important strategies for the construction of vascularized tissue engineering fat in the future.
【学位授予单位】:第四军医大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R318.08

【相似文献】

相关期刊论文 前10条

1 ;豚鼠巨噬细胞经P_(204)处理后的抗石英细胞毒作用[J];国外医学参考资料(卫生学分册);1976年04期

2 邓侠进;;巨噬细胞的抗癌作用[J];遵义医学院学报;1979年02期

3 陆天才;;疾病对肺巨噬细胞的影响[J];煤矿医学;1982年01期

4 郭瑞清;祝彼得;;一种分离巨噬细胞的简单方法[J];滨州医学院学报;1990年02期

5 谢志坚;巨噬细胞异质性[J];医学综述;2001年06期

6 饶艳;运动及神经内分泌对巨噬细胞功能的调节[J];体育与科学;2002年05期

7 朱金元;;吸烟对肺巨噬细胞的影响[J];浙江医学教育;2003年01期

8 张俊峰;过氧化物酶体增殖物激活受体与单核/巨噬细胞系[J];医学综述;2004年03期

9 韦锦学;顾军;;巨噬细胞的激活诱导死亡[J];生命科学;2006年02期

10 李晓曦;郭宁;曹雪涛;;肿瘤相关巨噬细胞促进肿瘤生长与转移的研究现状[J];中国肿瘤生物治疗杂志;2008年01期

相关会议论文 前10条

1 史玉玲;王又明;丰美福;;巨噬细胞激活作用的研究[A];中国细胞生物学学会第五次会议论文摘要汇编[C];1992年

2 吴国明;周辉;;巨噬细胞和创伤纤维化[A];2009年浙江省骨科学学术年会论文汇编[C];2009年

3 李奇;王海杰;;透明质酸对于淋巴结巨噬细胞运动的影响[A];解剖学杂志——中国解剖学会2002年年会文摘汇编[C];2002年

4 刘革修;欧大明;刘军花;黄红林;廖端芳;;丙丁酚在体外能抑制巨噬细胞脂质氧化介导的低密度脂蛋白氧化并调节氧化巨噬细胞的分泌功能[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年

5 叶金善;杨丽霞;郭瑞威;;环氧化酶-2/前列腺素E_2在血管紧张素Ⅱ刺激巨噬细胞表达细胞外基质金属蛋白酶诱导因子中的作用[A];第十三次全国心血管病学术会议论文集[C];2011年

6 秦帅;陈希;孔德明;;构建由绿色荧光标记巨噬细胞的转基因斑马鱼系[A];贵州省中西医结合内分泌代谢学术会论文汇编[C];2012年

7 武剑华;徐惠绵;;肿瘤相关巨噬细胞在胃癌中的相关研究[A];第9届全国胃癌学术会议暨第二届阳光长城肿瘤学术会议论文汇编[C];2014年

8 何军;;血凝素样氧化型低密度脂蛋白受体升高巨噬细胞内胆固醇水平[A];中华医学会第11次心血管病学术会议论文摘要集[C];2009年

9 宋盛;周非凡;邢达;;PDT诱导的凋亡细胞对巨噬细胞NO合成的影响[A];第七届全国光生物学学术会议论文摘要集[C];2010年

10 张磊;朱建华;黄元伟;姚航平;;血管紧张素Ⅱ对巨噬细胞(THP-1重细胞)凝集素样氧化低密度脂蛋白受体表达的影响[A];浙江省免疫学会第五次学术研讨会论文汇编[C];2004年

相关重要报纸文章 前10条

1 通讯员 李静 记者 胡德荣;恶性肿瘤巨噬细胞未必皆“恶人”[N];健康报;2014年

2 兰克;以尝试用巨噬细胞治瘫痪[N];科技日报;2000年

3 薛佳;免疫系统——人体的“卫士”[N];保健时报;2009年

4 记者 胡德荣;铁泵蛋白“维稳”铁代谢作用首次阐明[N];健康报;2011年

5 侯嘉 何新乡;硒的神奇功能[N];中国食品质量报;2003年

6 唐颖 倪兵 陈代杰;巨噬细胞泡沫化抑制剂研究快步进行[N];中国医药报;2006年

7 刘元江;新发现解释肿瘤为何易成“漏网之鱼”[N];医药经济报;2007年

8 本报记者 侯嘉 通讯员 何新乡;今天你补硒了吗[N];医药经济报;2003年

9 左志刚;升血小板药使用注意[N];医药养生保健报;2007年

10 记者 许琦敏;“铁泵”蛋白帮助回收铁元素[N];文汇报;2011年

相关博士学位论文 前10条

1 周赤燕;巨噬细胞MsrA对动脉粥样硬化的干预研究[D];武汉大学;2013年

2 章桂忠;TIPE2蛋白调控细胞增殖和炎症的机制研究[D];山东大学;2015年

3 张瑜;DKK1抑制巨噬细胞内脂质沉积及其相关分子机制[D];山东大学;2015年

4 孟涛;异丙酚对心脏收缩功能的抑制作用及其对巨噬细胞分泌功能调节的机制研究[D];山东大学;2015年

5 周兴;基于酵母微囊构建新型口服巨噬细胞靶向递送系统的研究[D];第三军医大学;2015年

6 蒋兴伟;Tim-3对巨噬细胞极化的调控机制研究[D];中国人民解放军军事医学科学院;2015年

7 刘伯玉;清道夫受体A介导小鼠巨噬细胞吞噬钩端螺旋体研究[D];上海交通大学;2013年

8 杨绍俊;miRNA-155介导ESAT-6诱导巨噬细胞凋亡的分子机制及其在结核诊断中的作用[D];第三军医大学;2015年

9 翟光耀;单核/巨噬细胞Ly6C~(low)亚群在心肌梗死后瘢痕形成期的抗炎特性研究[D];北京协和医学院;2014年

10 韩露;TRB3介导的脂肪组织巨噬细胞极化与糖尿病冠状动脉病变关系的研究[D];山东大学;2015年

相关硕士学位论文 前10条

1 马春梅;AP0E~(-/-)小鼠TLR9介导巨噬细胞极化效应对动脉粥样硬化作用的研究[D];福建医科大学;2015年

2 张译丹;盐皮质激素受体拮抗剂调控巨噬细胞表型对实验性矽肺的作用[D];河北医科大学;2015年

3 卢文冉;HCV core蛋白作用的巨噬细胞培养上清对肝细胞生物学性状的影响[D];河北医科大学;2015年

4 李文建;载脂蛋白E影响巨噬细胞因子表达及分型的机制研究[D];河北医科大学;2015年

5 曹爽;高糖对巨噬细胞TLR4信号转导的调节作用[D];河北医科大学;2015年

6 宁程程;肿瘤相关巨噬细胞在子宫内膜癌雌激素敏感性中的作用及机制研究[D];复旦大学;2014年

7 高龙;PLD4在肿瘤相关巨噬细胞抑制结肠癌增殖中的作用研究[D];成都医学院;2015年

8 任虹;感染期子宫颈癌U14细胞荷瘤小鼠抑制巨噬细胞CCL5分泌的机制研究[D];河北医科大学;2015年

9 李美玲;双酚A对小鼠腹腔巨噬细胞极化影响的体外研究[D];安徽医科大学;2015年

10 刘琼;黄芪多糖影响巨噬细胞向脂肪细胞趋化的作用及机制研究[D];新乡医学院;2015年



本文编号:2166201

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/swyx/2166201.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a3007***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com