当前位置:主页 > 医学论文 > 生物医学论文 >

基于心电脉搏信号的睡意检测方法研究

发布时间:2018-08-31 20:32
【摘要】:随着现代生活节奏的加快,睡眠不足、睡眠不良,甚至彻夜失眠的情况时有发生。人们在追求高效生活和工作的同时,也受到疲劳和睡意的危害。在高危操作环境下,像驾驶、钢铁领域以及核工业等,如果操作人员在工作时有睡意,那人们的生命财产安全都会受到威胁。而在一些病患的状态监测方面,比如阻塞性睡眠呼吸暂停综合征,实时的睡意监测也是十分必要的。心电和脉搏信号蕴含丰富的人体生理信息,测量也较为简便。研究过程中设计了睡意检测实验并且同步采集了30例健康无睡眠问题的实验对象在清醒和睡意状态下的心电信号、脉搏信号和脑电信号。 本文首先对筛选出的26例实验对象的心电和脉搏同步信号进行预处理,再通过特征提取与分析,选择在清醒和睡意状态下有显著性差异的特征用于分类。与清醒状态相比,在睡意状态下心电T波峰值、重搏波高度和脉搏波传输时间均非常显著地降低(p0.005),脉搏波起点到主波峰点的时间非常显著地增大(p0.005),心率值和心率变异性中的VLF值显著地降低(p0.05)。使用线性判别分析和支持向量机两种方法对这些特征分别进行单一特征和组合特征的分类。 本文除了提取到心电和脉搏信号在时域和频域上的20多种特征,计算了心电信号的小波能谱熵,还对睡眠剥夺的实验对象连续时间段内的心电RR间期最值和脉搏波特征K值进行了分析。 研究结果表明:睡意对心电和脉搏信号的一些特征有影响;心电T波峰值、重搏波高度、脉搏波传输时间、脉搏波起点到主波峰点的时间、心率以及心率变异性中的VLF在清醒和睡意两种状态下有显著性差异;特征组合有利于提高分类正确率;心电T波峰值的单一特征及其参与的组合特征的分类正确率高于其他。心电和脉搏特征能够用于区分清醒和睡意状态,而且心电和脉搏信号的测量方便,为睡意检测提供一种新的识别方法。
[Abstract]:As the pace of modern life accelerates, sleep deprivation, poor sleep, and even sleeplessness happen all night. People in the pursuit of efficient life and work, but also by fatigue and sleep harm. In high-risk environments, such as driving, steel and the nuclear industry, people's lives and property are threatened if they are sleepy at work. In some patients, such as obstructive sleep apnea syndrome, real-time sleep monitoring is also necessary. ECG and pulse signals contain abundant physiological information of human body, and the measurement is also relatively simple. In the course of the study, a sleepiness detection experiment was designed and 30 healthy subjects without sleep problems were simultaneously collected ECG signals, pulse signals and EEG signals in awake and sleepy states. In this paper, the electrocardiogram and pulse synchronization signals of 26 selected subjects were preprocessed, and then, by feature extraction and analysis, the significant differences between awake and sleepy state were selected for classification. Compared with awake state, the peak value of ECG T wave in sleeping state, The height of repulse wave and the transmission time of pulse wave decreased significantly (p0.005), the time from the starting point of pulse wave to the peak point of main wave increased significantly (p0.005), and the VLF value of heart rate and heart rate variability decreased significantly (p0.05). Linear discriminant analysis (LDA) and support vector machine (SVM) are used to classify these features into single feature and combined feature respectively. In this paper, in addition to extracting more than 20 characteristics of ECG and pulse signals in time and frequency domain, the wavelet energy spectrum entropy of ECG signal is calculated. The maximum value of ECG RR interval and characteristic K value of pulse wave in the continuous period of sleep deprivation were also analyzed. The results show that sleep affects some characteristics of ECG and pulse signal, the peak value of ECG T wave, the height of repulse wave, the time of pulse wave transmission, the time of starting point of pulse wave to the peak point of main wave, VLF in heart rate and heart rate variability was significantly different between awake and sleepiness states; the combination of features was helpful to improve the classification accuracy; the single feature of ECG T wave peak value and the classification accuracy rate of its involved combination characteristics were higher than those of others. The characteristics of ECG and pulse can be used to distinguish awake and sleepy states, and the measurement of ECG and pulse signals is convenient, which provides a new recognition method for sleepiness detection.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R318.0;TN911.7

【参考文献】

相关期刊论文 前10条

1 吴绍斌;高利;王刘安;;基于脑电信号的驾驶疲劳检测研究[J];北京理工大学学报;2009年12期

2 杨军,俞梦孙,王宏山;多分辨分析提取心率变异性中的睡眠结构信息[J];北京生物医学工程;2002年02期

3 杨军,王宏山,俞梦孙;心电图ST段测量的神经网络方法[J];北京生物医学工程;2002年02期

4 李增勇,焦昆,陈铭,杨渝书,王成焘;汽车驾驶员模拟精神负荷与心率变异性的相关性分析[J];北京生物医学工程;2002年03期

5 杨琳;张松;杨益民;罗志昌;;基于重搏波谷点的脉搏波波形特征量分析[J];北京生物医学工程;2008年03期

6 宋智;李焱淼;;时频分析在心电信号分析中的应用[J];大连交通大学学报;2010年02期

7 尚秀辉;郭爱煌;李广宇;;基于零相位数字滤波器的边界问题的分析[J];电子测量技术;2010年04期

8 纪跃波,秦树人,汤宝平;零相位数字滤波器[J];重庆大学学报(自然科学版);2000年06期

9 樊新海,安钢,张传清;零相位数字滤波及其应用[J];国外电子测量技术;2005年08期

10 杜娟;宁钢民;张韶文;白岩;郑筱祥;;脉搏波传导时间变异性的频域分析[J];航天医学与医学工程;2007年01期

相关博士学位论文 前2条

1 黄瀚敏;基于汽车驾驶员疲劳状态监测技术的汽车主动安全系统研究[D];重庆大学;2007年

2 吴群;基于心电信号的驾驶疲劳检测方法研究[D];浙江大学;2008年

相关硕士学位论文 前6条

1 杨华;基于心电脉搏信号的VDT精神疲劳识别方法研究[D];兰州理工大学;2011年

2 刘瑾奕;智能教室中基于图像处理和模糊逻辑的睡意检测研究与实现[D];上海交通大学;2007年

3 张志斌;基于计算机视觉的驾驶员疲劳实时检测研究[D];北京工业大学;2008年

4 王琦;基于心电脉搏信息的亚健康状态识别方法研究[D];兰州理工大学;2008年

5 张文静;移动医疗系统工作站的开发与设计[D];北京邮电大学;2009年

6 王业泰;基于实时脉搏信号处理的VDT视疲劳状态识别研究[D];兰州理工大学;2010年



本文编号:2216080

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/swyx/2216080.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户193fa***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com