基于电穿孔和孔径变化方程的球形细胞微孔特性研究
发布时间:2024-01-29 20:06
为进一步探究电穿孔理论机制,通过COMSOL建立单细胞电穿孔二维轴对称模型,该模型同时纳入表征微孔密度的电穿孔渐进方程和表征微孔动态演变过程的孔径变化方程,且模型的轴对称性使穿孔面积的计算更为准确,从而得到微孔的时空分布特性,并在此基础上探讨场强和脉宽对该特性的影响。结果表明:脉宽100μs、场强2 k V/cm的脉冲作用下,产生微孔7 862个,穿孔面积达细胞表面积的6.3%,电穿孔各参量的时空分布规律与文献结果一致,从而可验证所建模型的有效性;在1~5 k V/cm范围内增大脉冲场强,微孔数与场强成正比,孔径则与场强成反比,孔面积与细胞面积之比从1.3%增至12.9%;对两组能量相同的纳秒脉冲和微秒脉冲进行比较,发现脉冲结束时前者产生的微孔数是后者的353.1倍,而在细胞膜上最靠近电极的点,后者的孔径是前者的19.3倍,说明纳秒脉冲有利于微孔数增加,而微秒脉冲有利于孔径扩大。仿真结果表明,微孔特性决定电穿孔的发生和发展过程,微孔特性的精确计算是阐释电穿孔效应的关键所在。
【文章页数】:10 页
本文编号:3888755
【文章页数】:10 页
图1球形细胞几何模型。(a)rz平面;(b)三维旋转空间
图2细胞两极跨膜电位随时间变化趋势
图3P1~P7点跨膜电位随时间变化趋势
图4P1~P7点膜电导率随时间变化趋势
本文编号:3888755
本文链接:https://www.wllwen.com/yixuelunwen/swyx/3888755.html