当前位置:主页 > 医学论文 > 肿瘤论文 >

血清miR-1290联合DW-MRI纹理分析预测食管鳞癌放化疗敏感性及相关机制的研究

发布时间:2018-03-08 07:12

  本文选题:磁共振弥散加权成像 切入点:表观弥散系数 出处:《天津医科大学》2016年博士论文 论文类型:学位论文


【摘要】:第一部分DW-MRI纹理分析联合血清miR-1290建立预测模型目的:研究基于磁共振弥散加权成像(Diffusion-weighted magnetic resonance imaging,DW-MRI)的表观弥散系数(apparent diffusion coefficients,ADC)图像纹理分析方法,联合血清microRNA-1290(mi R-1290),建立高效预测食管鳞癌(esophageal squamous cell carcinoma,ESCC)放化疗敏感性的模型,指导ESCC个体化治疗。方法:43例病理证实的ESCC患者接受根治性同步放化疗,治疗结束1月后根据RECIST标准评价疗效。治疗前采集DW-MRI图像及进行血清miR-1290含量检测。对肿瘤各层面靶区进行勾画,并进行三维(3D)图像重建。分别对最大层面靶区及重建的图像进行2D和3D的纹理分析。纹理参数的提取方法选用直方图、强度-尺度-区域矩阵(intensity-size-zone matrix)、灰度共生矩阵(gray level co-occurrence matrix,GLCM)、灰度梯度共生矩阵(gray level gradient co-occurrence matrix,GLGCM)四种纹理分析方法。根据疗效评价结果,选用Mann-Whitney U Test筛选在敏感组和抗拒组中有统计学差异的参数,应用主成分分析(principal component analysis,PCA)进行参数降维,最后将降维后的成分利用人工神经网络(artificial neural network,ANN)及k最近邻(k-nearest neighbor,k-NN)方法建立预测模型,利用交叉验证(cross-validation)及四格表法(McNemar’s test)进行模型验证。同时利用降维后纹理参数联合患者血清miR-1290含量,利用上述建模方法,最终建立预测模型并进行校验。结果:根据RECIST标准判定患者治疗疗效,29例患者为敏感组(CR+PR),14例患者为(SD+PD)。通过Mann-Whitney U Test筛选,2D纹理参数中15个参数能够区分敏感组与抗拒组,3D纹理参数中18个纹理参数能够区分敏感组与抗拒组。PCA降维后,2D纹理分析利用ANN及k-NN建模准确率为65.1%及67.4%,3D纹理分析利用ANN及k-NN建模准确率为76.7%及79.1%。单独miR-1290预测ESCC放化疗敏感性的准确率69.8%。最后,利用纹理参数PCA降维后3种主成分联合血清miR-1290,通过ANN及k-NN再次建立预测模型,最终准确率达90.7%及93%。结论:基于DWI-ADC图像3D纹理模型在预测放化疗敏感性方面较2D准确性高。3D纹理模型联合血清miR-1290可以建立较高预测效能的ESCC放化疗敏感性预测模型。第二部分ESCC中miR-1290靶向NFIX调控机制的研究目的:通过体内及体外细胞实验探讨mi R-1290在ESCC中的作用机制。方法:在体内实验中,利用实时定量PCR(qRT-PCR)和蛋白质提取和免疫印迹试验(Western-blot)检测40例ESCC肿瘤及瘤旁组织中miR-1290和NFIX的表达,分析二者之间的关系。在体外细胞实验中,针对ECA-109及KYSE-410细胞系,转染miR-1290mimics、inhibitor、NFIX vector、NFIX siRNA等过表达或降表达质粒,调控miR-1290、NFIX的表达;集落形成实验检测细胞增值;流式细胞仪分析细胞周期;Transwell实验检测细胞侵袭和迁移;qRT-PCR检测miR-1290和NFIX mRNA;Western-blot免疫印迹法检测NFIX蛋白水平。结果:miR-1290在ESCC组织中明显升高,miR-1290在肿瘤与瘤旁组织中含量有明显差异。NFIX在ESCC组织中明显降低,miR-1290与NFIX含量呈明显负相关。miR-1290与手术患者T分期、TNM分期呈明显相关,p值0.05。双荧光素酶实验证实miR-1290直接作用于NFIX mRNA的3’-UTR端,miR-1290通过降解mRNA影响NFIX表达水平。集落形成实验证明mi R-1290通过靶向NFIX促进ESCC细胞增值,细胞周期实验证明miR-1290通过靶向NFIX增加ESCC细胞S和G2/M期比例。Transwell实验证明miR-1290通过靶向NFIX促进ESCC细胞迁移及侵袭。结论:ESCC患者中,miR-1290与患者T分期、TNM分期明显相关,miR-1290可通过降解NFIX mRNA影响NFIX蛋白表达;miR-1290通过靶向NFIX促进ESCC细胞增值、侵袭和迁移。
[Abstract]:The first part of the DW-MRI texture analysis combined with serum miR-1290 model objective: To study the magnetic resonance diffusion weighted imaging (Diffusion-weighted magnetic resonance based on imaging, DW-MRI) of apparent diffusion coefficient (apparent diffusion, coefficients, ADC) image texture analysis method, combined with serum microRNA-1290 (MI R-1290), the establishment of efficient prediction of esophageal squamous cell carcinoma (esophageal squamous cell carcinoma ESCC), chemotherapy sensitivity model, ESCC guide individualized treatment. Methods: 43 cases of pathologically confirmed ESCC patients underwent radical radiotherapy and chemotherapy, the curative effect after treatment ended in January according to the RECIST criteria. Before treatment, DW-MRI image acquisition and detection of serum miR-1290. The outline of each level and tumor target area. The three-dimensional (3D) image reconstruction. The image analysis respectively on the maximum level of target area and reconstruction of the 2D and 3D texture texture parameters. The extraction methods of histogram, intensity scale matrix (intensity-size-zone matrix) - regional, gray level co-occurrence matrix (gray level co-occurrence matrix, GLCM), gray gradient co-occurrence matrix (gray level gradient co-occurrence matrix, GLGCM) four kinds of texture analysis method. According to the clinical evaluation results, choose Mann-Whitney U Test have significant difference in the parameters selection sensitive group and resistant group, using principal component analysis (principal component, analysis, PCA) of parameter reduction, finally the reduced dimensionality of the components by using artificial neural network (artificial neural network, ANN) and K (k-nearest neighbor, k-NN nearest neighbor) method to establish prediction model, using cross validation (cross-validation) and four table method (McNemar s test) to validate the model. At the same time using low dimensional texture parameters combined with the content of miR-1290 in serum, using the above modeling method, The final prediction model is established and validated. Results: according to the RECIST criteria patients, 29 patients with sensitive group (CR+PR), 14 patients (SD+PD). The Mann-Whitney U Test screening, 15 parameters of 2D texture parameters can distinguish in sensitive group and resistant group, 18 texture 3D texture parameters parameters to distinguish between sensitive group and resistant group.PCA dimensionality reduction, 2D texture analysis using ANN and k-NN modeling accuracy is 65.1% and 67.4%, 3D texture analysis using ANN and k-NN modeling accuracy is 76.7% and 79.1%. alone miR-1290 prediction ESCC chemotherapy sensitivity accuracy 69.8%. finally, using texture parameters after the dimensionality reduction of PCA 3 the main component of combined serum miR-1290, ANN and k-NN through again to establish prediction model, the final accuracy of 90.7% and 93%. conclusion: DWI-ADC 3D texture model in predicting the chemotherapy sensitivity than 2D.3D texture model based on high accuracy Serum miR-1290 can establish a prediction of high performance ESCC chemotherapy sensitivity prediction model. The second part of the ESCC miR-1290 NFIX targeting objective regulation mechanism: To investigate the mechanism of MI R-1290 in ESCC cells by in vivo and in vitro experiments. Methods: in vivo experiments, using real time quantitative PCR (qRT-PCR) and protein extraction and Western blot (Western-blot) expression of miR-1290 and NFIX were detected in 40 patients with ESCC tumors and tumor tissues, to analyze the relationship between the two. In vitro experiments, for ECA-109 and KYSE-410 cells transfected with miR-1290mimics, inhibitor, NFIX, vector, NFIX and siRNA over expression or reduced expression plasmid, the regulation of miR-1290, NFIX the expression; colony forming cell proliferation assay; cell cycle was analyzed by flow cytometry; Transwell assay, cell migration and invasion; qRT-PCR miR-1290 and NFIX mRNA detection; W Detection of NFIX estern-blot protein level by Western blot. Results: miR-1290 was significantly higher in ESCC tissues, the content of miR-1290 in tumor and tumor adjacent tissues were significantly different.NFIX decreased significantly in ESCC tissues,.MiR-1290 were negatively correlated with T in patients with surgical stage miR-1290 and NFIX content was significantly related to TNM stage, the p value of 0.05. luciferase experiments confirmed that the direct effect of miR-1290 on NFIX mRNA -UTR 3 'end, the level of miR-1290 by influencing the expression of NFIX mRNA degradation. Colony formation assay demonstrated that MI R-1290 can promote the proliferation of ESCC cells by targeting NFIX, cell cycle experiments demonstrated that miR-1290 targeted by NFIX S and ESCC cells increased the proportion of G2/M phase.Transwell experiments show that miR-1290 promotes the migration and the invasion of ESCC cells by targeting NFIX. Conclusion: ESCC patients, miR-1290 patients with T staging, TNM staging was significantly related, miR-1290 can influence the degradation of NFI through NFIX mRNA The expression of X protein; miR-1290 promotes the proliferation, invasion and migration of ESCC cells by targeting NFIX.

【学位授予单位】:天津医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R735.1

【相似文献】

相关期刊论文 前10条

1 刘f ,程敬之;分形模型的超声图像纹理分析[J];生物医学工程学杂志;1999年03期

2 吴天秀;蔡洁;;基于纹理分析的骨质疏松计量诊断[J];中国骨质疏松杂志;2014年07期

3 张镜清,孙军;采用纹理分析特征用于肝脏超声图像的病患的辨识[J];中国医学影像技术;1993年03期

4 刘伟;李月卿;;医学图像纹理分析综述[J];泰山医学院学报;2006年01期

5 杜X,童勤业,许俊;基于小波包分解和HMM模型的纹理分析[J];医疗设备信息;2003年08期

6 李振立;杨晓梅;;基于纹理分析的带标记线心脏MR图像分割[J];中国组织工程研究与临床康复;2011年09期

7 王李冬;邰晓英;巴特尔;;基于小波变换纹理分析的医学图像检索[J];中国医疗器械杂志;2006年02期

8 黄亚丽,李芬华,赵真;B超肝脏图像纹理特征提取方法的实验研究[J];中国医学影像技术;2004年12期

9 罗立民,鲍旭东,,田雪芹;基于纹理分析的磁共振图象区域分割[J];自动化学报;1995年04期

10 ;[J];;年期

相关会议论文 前8条

1 徐国栋;郭恒业;;统计纹理生成模型[A];中国科学技术协会首届青年学术年会论文集(工科分册·上册)[C];1992年

2 卢海燕;陈明;孙梅;宋树良;马艳;郑传立;;肝纤维化超声图像纹理分析与组织学检查对照研究[A];第二届长三角超声医学论坛暨2009年浙江省超声医学学术年会论文汇编[C];2009年

3 杨关;冯国灿;邹小林;刘志勇;;彩色纹理分析中的高斯图模型[A];第十五届全国图象图形学学术会议论文集[C];2010年

4 熊欣;何中市;;纹理分析在超声图像中的应用[A];2008年计算机应用技术交流会论文集[C];2008年

5 姚明海;应宏微;;基于反馈的汽车牌照纹理分析定位算法的研究[A];第二十三届中国控制会议论文集(下册)[C];2004年

6 黄战华;刘正;张振;蔡怀宇;杨基春;张尹馨;;基于矢量化方法的纹理缺陷快速检测[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅰ)[C];2008年

7 管玉娟;王淑晴;关泽群;;纹理分析的条件模式谱方法[A];第十四届全国遥感技术学术交流会论文摘要集[C];2003年

8 刘佳;李哲英;王淑英;;路标识别算法研究[A];2008通信理论与技术新发展——第十三届全国青年通信学术会议论文集(下)[C];2008年

相关博士学位论文 前3条

1 高妮;基于Contourlet提取纹理建立早期AD的高斯过程预测模型[D];首都医科大学;2016年

2 毛羽;血清miR-1290联合DW-MRI纹理分析预测食管鳞癌放化疗敏感性及相关机制的研究[D];天津医科大学;2016年

3 张国鹏;三维纹理分析在虚拟结肠镜计算机辅助检测/诊断中的应用研究[D];第四军医大学;2013年

相关硕士学位论文 前10条

1 陈金霞;快速粒度估计法在纹理分析中的应用研究[D];华南理工大学;2015年

2 刘W

本文编号:1582895


资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/zlx/1582895.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户40765***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com