抗精神病药喹硫平治疗胶质瘤的实验研究
本文选题:胶质瘤干细胞 切入点:喹硫平 出处:《第三军医大学》2015年博士论文 论文类型:学位论文
【摘要】:恶性胶质瘤细胞对放疗、化疗不敏感,导致其临床治愈率低,术后复发率居高不下,患者5年存活率不到5%。因此,探寻该疾病行之有效的治疗途径,发现相应的生物学治疗途径至关重要。胶质瘤干细胞(glioma stem-like cells,GSLCs)是胶质瘤组织中存在的极少数具有高度抵抗放疗和化疗的细胞,具有无限增殖和多向分化能力,可以分化为神经元表型细胞,星形胶质细胞表型细胞以及少突胶质细胞表型细胞。GSLCs概念的提出为胶质瘤治疗提供了重要靶点,因此寻找能够促进GSLCs定向分化药物可能为临床治疗胶质瘤提供新的途径。流行病学调查发现一个有趣的现象:精神分裂症患者的肿瘤发病率比正常人群明显减少。研究人员发现多种抗精神病药如氯丙嗪、奥氮平、利培酮等,均能明显抑制胶质母细胞瘤细胞系IMR32细胞增生,且对正常细胞影响甚微。喹硫平(Quetiapine,QUE)是继氯氮平、利培酮和奥氮平之后的第4个非典型抗精神病药物。本课题组前期研究首次发现喹硫平能显著增加神经干细胞(neuronal stem cells,NSCs)分化为少突胶质细胞的比例,并能进一步促进少突胶质细胞的成熟及髓鞘形成。我们在实验中还发现QUE能促进少突胶质前体细胞(oligodendrocyte progenitor cells,OPCs)分化成熟,考虑GSLCs与NSCs,OPCs关系密切,我们提出QUE可能具有抑制GSLCs增殖及促进GSLCs定向分化为少突胶质细胞表型的潜能。本研究利用GSLCs培养和移植成瘤模型,研究了QUE对胶质瘤发生发展的作用,及其与胶质瘤一线治疗药物替莫唑胺(Temozolomide,TMZ)的联合药效,探讨了QUE对GSLCs增殖分化的调节作用及可能的分子机制研究总共分为三个部分:第一部分:喹硫平抑制胶质瘤生长的作用利用无血清条件培养系统从胶质母细胞瘤细胞系GL261中筛选获得胶质瘤干细胞,建立胶质瘤原位及皮下成瘤模型,分别采用QUE、TMZ以及二者联合治疗等方式,运用荧光素酶活体成像技术、动物行为学、HE染色、免疫组织化学和Western blot等方法检测各种治疗方式对胶质瘤发生和生长特性的作用。最后为了进一步检验QUE可能作用于GSLCs而抑制胶质瘤的产生或生长。我们分别对GSLCs移植裸鼠皮下成瘤以及脑室成瘤后使用TMZ 21天来杀死肿瘤细胞,停药后再分别给予生理盐水和QUE治疗,利用荧光素酶活体成像技术观察胶质瘤的生长情况。主要结果如下:1.免疫荧光染色显示无血清培养条件下筛选GL261获得的细胞表达肿瘤干细胞(cancer stem cells,CSCs)标记物CD133、Sox2、NG2和Nestin,加入10%胎牛血清分化10天后大部分细胞表达神经胶质酸性蛋白(glial fibrillary acidic protein,GFAP),少部分表达髓鞘碱性蛋白(myelin basic protein,MBP)。以上结果表明所获得细胞具有胶质瘤干细胞特性,为胶质瘤干细胞GSLCs。2.GSLCs皮下移植裸后7天后可见小的瘤体形成,21天后瘤体平均直径达到1.5cm,而QUE处理组、TMZ处理组及QUE联合TMZ组,成瘤时间均有所推迟,瘤体平均体积也小于对照组,其中尤以QUE联合TMZ疗效最明显。组织学病理检测发现,治疗组明显减少了胶质瘤细胞的分裂潜能,即核分裂像减少,增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)阳性细胞明显减少。而同对照组相比,治疗组,尤其是QUE和TMZ联合治疗组,Olig2阳性细胞明显减少,而MBP阳性细胞则明显增多(P0.01)。Western blot结果显示QUE和QUE联合TMZ治疗组MBP表达明显增多,而Vimentin,GFAP表达下降(P0.05)。3.GSLCs脑室移植后,活体荧光成像显示小鼠于1周后出现肿瘤,而QUE,TMZ治疗后肿瘤大小有所减少,而二者联合用药后肿瘤最小,动物成活率增加。行为学旷场实验显示,药物治疗组小鼠较原位脑胶质瘤模型小鼠活动总路程明显提高(P0.05),提示其活动能力保留较好。QUE对胶质瘤生长有抑制作用,而且QUE联合替莫唑胺能更好抑制胶质瘤生长,降低其恶性程度。4.TMZ治疗21天后肿瘤生长明显抑制,但停药后1周后,残留的胶质瘤干细胞开始生长至瘤。而QUE处理组,肿瘤生长明显减慢,大小明显减小(P0.05)。说明QUE可能抑制GSLCs增殖或促进其分化。本部分实验说明QUE对胶质瘤的生长有一定的抑制作用,而且QUE联合替莫唑胺能更好抑制胶质瘤生长,降低其恶性程度。这些结果提示QUE可能对GSLCs生长分化有一定的影响。第二部分:喹硫平对肿瘤干细胞增殖及分化的作用为了证明QUE可能作用于GSLCs而抑制胶质瘤干细胞的产生或生长。我们利用无血清条件培养系统从胶质母细胞瘤细胞系GL261中筛选获得胶质瘤干细胞,用MTT,RT-PCR,流式细胞检测等技术观察不同浓度QUE对胶质瘤干细胞增殖作用。用免疫荧光及Western blot来检测不同浓度QUE对胶质瘤干细胞分化作用。主要结果如下:1.体外实验显示QUE浓度50、100μmol/L能明显抑制GSLCs的生长,悬浮的球团明显小于对照组(P0.01)。MTT实验也证实了QUE的抑制效应(P0.01)。流式细胞检测中QUE明显减少S期细胞(P0.05),而且能显著减少胶质瘤干细胞中Sox2及Ki67的基因表达(P0.01)。2.以1%胎牛血清诱导GSLCs分化过程中,QUE处理可显著提高少突胶质细胞成熟蛋白MBP及CC1阳性细胞数;而且浓度依赖性降低干细胞因子Sox2,Olig2蛋白表达(P0.05),而升高少突胶质细胞相关因子MBP,Olig1蛋白表达(P0.05)。本部分实验结果表明QUE能抑制胶质瘤干细胞增殖并且能促进其向类似少突胶质细胞分化。第三部分:喹硫平促进胶质瘤干细胞分化的分子机制初探由于Wnt/β-catenin通路在GSLCs增殖分化中发挥了至关重要的作用,而且QUE的抗精神病的药物机制也涉及该途径,所以我们利用免疫组化及Western blot等技术检测了离体在体中QUE对胶质瘤干细胞分化中Wnt/β-catenin信号通路的影响。主要结果如下:1.在体实验中,免疫组化显示对照组β-catenin在细胞质表达较多并且有入核现象,而QUE组中β-catenin在细胞质表达较少。Western blot显示QUE组中p-GSK-3β(ser9)减少(p0.01),促进β-catenin降解,导致β-catenin表达减少(p0.01)。2.在胶质瘤干细胞分化过程中,QUE可以减少p-GSK-3β(ser9)的表达,提高磷酸化β-catenin(P-β-catenin)而降低β-catenin水平(P0.05)。这种作用呈时间浓度依赖性。而且这种作用可以被Wnt/β-catenin通路激活剂QS11和Li Cl拮抗。本部分实验说明QUE可能通过激活GSK-3β,使β-catenin降解,进而抑制Wnt/β-catenin通路而促进GSLCs向少突胶质样细胞分化。以上所有结果提示QUE有可能成为与TMZ联合用药的候选,为恶性胶质瘤的治愈提供新的策略。
[Abstract]:Radiotherapy for malignant glioma cells, not sensitive to chemotherapy, the clinical cure rate and low recurrence rate is high, with 5 year survival rate of less than 5%. so the search for the effective way of disease, found crucial biological treatment corresponding approaches. Glioma stem cells (glioma stem-like cells, GSLCs) is one of the few it is highly resistant to radiotherapy and chemotherapy of glioma cells exist in the organization, with unlimited proliferation and multi differentiation capacity and can differentiate into neuron cell phenotype, propose astrocytic phenotype cells and phenotype of oligodendrocytes.GSLCs concept provides an important target for glioma therapy, therefore can promote the differentiation of GSLCs for drugs may provide a new way for the clinical treatment of glioma. Epidemiological survey found an interesting phenomenon: the schizophrenia patients tumor incidence rate ratio The normal population decreased significantly. The researchers found that many antipsychotic drugs such as chlorpromazine, olanzapine, risperidone, can significantly inhibit glioblastoma cell line IMR32 cell proliferation, and has little effect on normal cells. Quetiapine (Quetiapine, QUE) is the second after clozapine, risperidone and olanzapine, fourth atypical antipsychotics. Our previous study found for the first time quetiapine can significantly increase the neural stem cells (neuronal stem cells, NSCs) to differentiate into oligodendrocytes and proportion, to further promote the formation of mature and myelin oligodendrocyte. We also found that in the experiment of QUE can promote oligodendrocyte precursor cells (oligodendrocyte progenitor cells, OPCs) differentiation and maturation, consider GSLCs and NSCs, OPCs are closely related, we proposed that QUE may inhibit GSLCs proliferation and promote the differentiation of GSLCs into oligodendrocytes form Type potential. This study culture and transplantation tumor model by using GSLCs, QUE to study the occurrence and development of glioma cells and glioma, and first-line therapy of temozolomide (Temozolomide, TMZ) of the combined effect, discuss the molecular mechanism of regulation of QUE on the proliferation and differentiation of GSLCs and the total is divided into three parts: the first part: quetiapine inhibited culture system from glioblastoma cell line GL261 in vitro glioma stem cells in serum-free conditions using glioma growth, establish glioma orthotopic and subcutaneous tumor model, respectively QUE, TMZ and the combination of the two treatment methods, the use of in vivo imaging of luciferase, animal behavior, HE staining, immunohistochemistry and Western blot methods to detect various treatments of glioma and growth characteristics. Finally, in order to further test QUE Effect on GSLCs and inhibit the production or growth of glioma. We were on GSLCs transplanted subcutaneous tumor formation and tumor ventricle using TMZ 21 days to kill tumor cells, after discontinuation were given normal saline and QUE treatment, and observed the growth of glioma by in vivo imaging of luciferase. The main results are as follows: 1. immunofluorescence staining showed that the serum-free medium GL261 cells obtained by screening the expression of tumor stem cells (cancer stem cells, CSCs) markers CD133, Sox2, NG2 and Nestin, with 10% fetal bovine serum for 10 days most of the cell differentiation and expression of glial fibrillary acidic protein (glial fibrillary acidic protein, GFAP), the expression of myelin basic protein a small part (myelin basic protein, MBP). The results show that the obtained cells have the characteristics of glioma stem cells, glioma stem cells of GSLCs.2.GSLCs skin grafting after 7 days naked down See the small tumor formation, 21 days after the tumor diameter reached 1.5cm, and the QUE treatment group, TMZ treatment group and QUE combined with TMZ group, the time of tumor formation was delayed, the average volume of the tumor is less than that of the control group, especially in the curative effect of QUE combined with TMZ. The most obvious histopathological detection, treatment group significantly reduced glioma cell division potential, namely the mitotic reduce proliferating cell nuclear antigen (proliferating cell nuclear antigen, PCNA). The positive cells were significantly decreased compared with the control group, treatment group, especially QUE and TMZ combined treatment group, Olig2 positive cells decreased significantly, while MBP positive cells was significantly increased (P0.01).Western blot showed that QUE and QUE combined with TMZ treatment group MBP was significantly increased, while Vimentin decreased expression of GFAP (P0.05).3.GSLCs ventricle after transplantation, in vivo fluorescence imaging showed that mice in 1 weeks after the tumor, and QUE, TMZ after the treatment of goiter The tumor size decreased, and the two combination tumor minimum, animal survival rate increased. The behavior of open field test showed that the drug treatment group compared with the mouse glioma model of mice significantly increased the total distance (P0.05), suggesting that the activity of well preserved.QUE has inhibitory effect on glioma growth, and QUE combined with temozolomide can better inhibit glioma growth, reduce the malignant degree of.4.TMZ could inhibit the growth of tumor after 21 days of treatment, but after 1 weeks after stopping the growth of glioma tumor cells began to dry. The residues in QUE treated group, the tumor length was significantly decreased, size decreased significantly (P0.05) QUE. May inhibit GSLCs proliferation or promote their differentiation. The results suggested that QUE had a certain inhibitory effect on the growth of glioma, and QUE combined with temozolomide can better inhibit glioma growth, reduce the degree of malignancy. These results suggest that QUE May have a certain impact on the growth and differentiation of GSLCs. The second part: the effect of quetiapine on the proliferation and differentiation of tumor stem cells in order to prove the possible role of QUE on GSLCs and inhibit the cell production or growth of glioma stem. We use the training system from the glioblastoma cell line GL261 was obtained from human glioma stem cells. With MTT, RT-PCR in serum-free conditions, flow cytometry were used to evaluate the different concentrations of QUE on glioma stem cell proliferation. By immunofluorescence and Western blot to detect different concentrations of QUE on glioma stem cell differentiation. The main results are as follows: 1. in vitro experiments showed that QUE concentration of 50100 mol/L could significantly inhibit the growth of GSLCs the suspension, the pellet was significantly less than the control group (P0.01).MTT experiments also confirmed the inhibitory effect of QUE (P0.01). Flow cytometry QUE significantly reduced S phase cells (P0.05), and can significantly reduce glioma The expression of Sox2 and Ki67 in stem cell gene (P0.01).2. with 1% fetal bovine serum to induce GSLCs differentiation, QUE treatment can significantly improve the oligodendrocyte maturation protein MBP and the number of CC1 positive cells; and concentration dependent decrease of stem cell factor Sox2, the expression of Olig2 protein (P0.05), and the increase of oligodendrocyte cell related cytokines MBP, Olig1 protein expression (P0.05). The experimental results show that QUE can inhibit the proliferation of glioma stem cells and can promote its similar to oligodendrocyte differentiation. The third part: the differentiation of glioma stem cells into the mechanism due to Wnt/ beta -catenin pathway play a crucial role in the proliferation and differentiation of GSLCs in the promotion of quetiapine, and antipsychotic drug mechanism of QUE is also involved in the way, so we use immunohistochemistry and Western blot were detected in vitro in QUE on glioma stem cell differentiation in W Effect of nt/ beta -catenin signal pathway. The main results are as follows: 1. in vivo experiment, control group P -catenin in the cytoplasm and more nuclear phenomena, and beta -catenin in the QUE group in the cytoplasm less.Western blot display QUE group p-GSK-3 beta (ser9) decreased (P0.01), promote beta the degradation of -catenin, resulting in decreased expression of beta -catenin (P0.01).2. in glioma stem cell differentiation process, QUE can reduce the p-GSK-3 beta (ser9) expression, increase the phosphorylation of beta -catenin (P- beta -catenin) decreased beta -catenin level (P0.05). This effect is dose dependent and time dependent. And this effect can. Wnt/ beta -catenin pathway activation agent QS11 and Li. The results suggested that Cl antagonist QUE may activate GSK-3 beta, the beta -catenin degradation, and inhibition of Wnt/ beta -catenin pathway and promote GSLCs to differentiate into oligodendrocytes. All of the above results. QUE may be a candidate for combination with TMZ, providing a new strategy for the cure of malignant gliomas.
【学位授予单位】:第三军医大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R739.41
【相似文献】
相关期刊论文 前10条
1 周志华;易良;卞修武;;胶质瘤干细胞研究进展[J];中华病理学杂志;2007年03期
2 徐俊杰;于洪泉;国巍;赵伟;金宏;温娜;齐玲;;西兰花多肽对大鼠C6胶质瘤细胞生长的影响[J];中风与神经疾病杂志;2012年11期
3 徐俊杰;于洪泉;赵伟;金宏;温娜;齐玲;刘兴吉;;西兰花多肽对C6胶质瘤细胞的诱导凋亡作用[J];吉林大学学报(医学版);2013年01期
4 仝海波,江澄川,唐镇生,金一尊;胶质瘤细胞化学增敏作用实验研究[J];山西临床医药;2000年07期
5 李嗍,王枫,缪珊,骆文静;过量锌对鼠胶质瘤细胞体外生长的影响[J];解放军预防医学杂志;2001年04期
6 梁一鸣,郭国庆,郑少俊,沈伟哉;胶质瘤血管内皮生长因子表达的调节[J];临床与实验病理学杂志;2001年02期
7 曲元明,韩韬,李桂林,王成伟;血管内皮细胞生长因子抗体对胶质瘤生长的影响[J];山东医科大学学报;2001年02期
8 黄强,董军;胶质瘤的分子外科治疗[J];中国微侵袭神经外科杂志;2001年04期
9 叶明,周岱,周幽心,王玮,傅建新,黄煜伦;血管内皮生长因子在胶质瘤中的表达[J];肿瘤;2002年06期
10 顾宇翔,陈衔城,王宇倩;胶质瘤对亲细胞非均质分子脂质和几种药物敏感性的比较[J];复旦学报(医学版);2003年02期
相关会议论文 前10条
1 李飞;李梅;卢佳友;朱刚;林江凯;孟辉;吴南;陈志;冯华;;脂质微区干扰剂甲基-β-环糊精影响C6胶质瘤细胞侵袭和迁移的体外实验研究[A];中国医师协会神经外科医师分会第四届全国代表大会论文汇编[C];2009年
2 吴安华;王运杰;Ohlfest JR;Wei Chen;Low WC;;胶质瘤的生物治疗-从实验室到临床[A];中华医学会神经外科学分会第九次学术会议论文汇编[C];2010年
3 徐宏;韩杨云;孙中书;李新军;;与胶质瘤代谢通路相关的候选基因筛选[A];中华医学会神经外科学分会第九次学术会议论文汇编[C];2010年
4 潘冬生;;多基因修饰胶质瘤细胞疫苗的抗肿瘤免疫反应[A];中国医师协会神经外科医师分会第六届全国代表大会论文汇编[C];2011年
5 俞文华;车志豪;张祖勇;许培源;陆镛民;傅林;朱强;陈锋;杜权;;骨桥蛋白在胶质瘤细胞中的表达及其信号传导途径[A];2005年浙江省神经外科学术会议论文汇编[C];2005年
6 张震;徐克;;低强度超声诱导C6胶质瘤细胞凋亡的体外实验研究[A];中华医学会第十三次全国超声医学学术会议论文汇编[C];2013年
7 蒋伟峰;高方友;尹浩;;白细胞介素-17及其受体在胶质瘤中的表达及临床意义[A];2013年贵州省神经外科年会论文集[C];2013年
8 徐庆生;张小兵;周永庆;;胶质瘤干细胞及其放疗敏感性[A];2011年浙江省神经外科学学术年会论文汇编[C];2011年
9 杨孔宾;赵世光;刘炳学;陈晓丰;戴钦舜;;K~+通道阻断剂四乙胺对大鼠胶质瘤细胞的增殖和凋亡影响[A];中国医师协会神经外科医师分会第四届全国代表大会论文汇编[C];2009年
10 黄强;;胶质瘤生成细胞研究[A];第三届中国肿瘤学术大会教育论文集[C];2004年
相关重要报纸文章 前6条
1 衣晓峰 冯宇曦;中药三氧化二砷有望成为治疗胶质瘤新药[N];中国医药报;2011年
2 记者 匡远深;让胶质瘤干细胞不再“繁殖”[N];健康报;2011年
3 张献怀 张文;瘤区埋雷 持续杀伤[N];健康报;2007年
4 白毅;人脑胶质瘤基础与应用研究喜结“九大硕果”[N];中国医药报;2006年
5 王德江;刘藏;王贵怀;曹勇;王新生;肖新如;交流最新进展 提高诊治水平[N];中国医药报;2005年
6 闻新;狂噪症状大大缓解[N];医药经济报;2004年
相关博士学位论文 前10条
1 汪云;抗精神病药喹硫平治疗胶质瘤的实验研究[D];第三军医大学;2015年
2 董军;CUL4B在神经胶质细胞瘤中的作用研究[D];山东大学;2015年
3 张睿;循环miR-221/222在胶质瘤诊断与预后中的价值与基于CED的中枢神经系统给药新方法的研究[D];山东大学;2015年
4 许森林;ALDH1A1在胶质瘤侵袭和结直肠癌转移中的作用和机制[D];第三军医大学;2015年
5 王啸;靶向嵌段共聚物胶束在胶质瘤磁共振成像、药物输送及治疗的应用[D];安徽医科大学;2015年
6 廖红展;锌指转录因子SNAI2在miR-203的影响下通过上皮间质转化参与胶质瘤耐药机制的调节[D];南方医科大学;2015年
7 潘俊;IRG1促进胶质瘤增殖的作用机制及临床意义[D];南方医科大学;2015年
8 郑传宜;胶质瘤中GLUT3基因异常表达的意义及其相关调控机制[D];南方医科大学;2015年
9 徐红超;氩氦冷冻消融联合GM-CSF治疗胶质瘤小鼠的疗效及其对小鼠脾脏树突状细胞免疫功能影响[D];南方医科大学;2015年
10 黄素宁;TNFRSF6B在胶质瘤中的表达及对胶质瘤细胞增殖及凋亡的作用研究[D];南方医科大学;2015年
相关硕士学位论文 前10条
1 张大庆;单核细胞趋化蛋白-1在骨髓间充质干细胞向胶质瘤细胞趋化中的作用研究[D];大连医科大学;2012年
2 黄俊龙;ADC值与胶质瘤Ki-67、MGMT的相关性研究[D];福建医科大学;2015年
3 李明聪;下调Pygo2对U251及U251起源的胶质瘤干细胞生物学特性的影响[D];福建医科大学;2015年
4 徐云峰;胶质瘤干细胞的3D培养及其核酸适体筛选的探索[D];福建医科大学;2015年
5 张静文;T细胞过继免疫治疗小鼠脑胶质瘤原位模型的研究[D];河北医科大学;2015年
6 洪宇;胶质瘤瘤周水肿、病理级别、Ki-67表达三者相关性研究[D];石河子大学;2015年
7 姬云翔;磷酸化Cx43蛋白在人胶质瘤细胞中表达及其与肿瘤细胞增殖相关性研究[D];石河子大学;2015年
8 朱峰;OPN的异常表达与胶质瘤的相关性研究[D];河北医科大学;2015年
9 刘兵;SENP1表达水平对人脑胶质瘤发生发展的作用机制及其相关性[D];河北医科大学;2015年
10 李文华;Slit2/Robo1在人脑胶质瘤中的表达及临床意义[D];河北医科大学;2015年
,本文编号:1622719
本文链接:https://www.wllwen.com/yixuelunwen/zlx/1622719.html