当前位置:主页 > 医学论文 > 肿瘤论文 >

稀土上转换发光纳米复合材料用于肿瘤的多模成像及光热治疗的研究

发布时间:2018-05-25 20:00

  本文选题:稀土上转换发光纳米材料 + 表面修饰 ; 参考:《苏州大学》2016年硕士论文


【摘要】:第一部分用于多模成像的稀土上转换发光纳米复合材料的制备及应用初步探究目的:探讨稀土上转换发光纳米复合材料PEDOT:UCNP:Fe_3O_4:PEG用于多模成像应用的可行性及价值。方法:1)采用高温热分解法制备出上转换纳米颗粒Na YF4(Y:Yb:Er=78%:20%:2%),利用OA-PAA高分子聚合物修饰纳米粒子增加其水溶性;以聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)为核心,外层包裹由OA-PAA修饰的稀土上转换发光纳米材料(UCNPs)及二巯基丁二酸(DMSA)修饰的四氧化三铁(Fe_3O_4),再通过层层组装的方式将纳米粒子表面修饰聚丙烯酸(PAA)、多环芳烃(PAH)及聚乙二醇(PEG)层,最后得到有良好生物相容性的PEDOT:UCNP:Fe_3O_4:PEG上转换发光纳米复合物,并对其形貌、电位进行表征研究。2)将不同浓度梯度的PEDOT:UCNP:Fe_3O_4:PEG进行磁共振T2序列的扫描,检测其磁共振成像性质。3)取三组梯度浓度的PEDOT:UCNP:Fe_3O_4:PEG溶液及去离子水各1ml,在808nm激光器下照射5分钟,使用热成像仪记录温度变化,检测其光热效果;4)通过体外细胞毒性试验(MTT)对PEDOT:UCNP:Fe_3O_4:PEG颗粒的体外毒性进行研究。5)将PEDOT:UCNP:Fe_3O_4:PEG瘤内注入荷瘤小鼠模型,进行磁共振T2序列的扫描,检测其磁共振成像性质。6)将PEDOT:UCNP:Fe_3O_4:PEG孵育小鼠小鼠乳腺癌(4T1)细胞24小时后,用DAPI染细胞核,用荧光显微镜观查PEDOT:UCNP:Fe_3O_4:PEG在细胞水平成像能力。7)将PEDOT:UCNP:Fe_3O_4:PEG溶液瘤内注入荷瘤小鼠模型,用带有980nm激发光源的Maestro EX(CRi.Inc.)活体成像系统检测其上转换成像性质结果:1)透射电子显微镜(TEM)显示,上转换发光纳米颗粒(UCNPs)是平均直径约在30nm的单分散纳米晶体。经过组装和层层修饰以后,PEDOT:UCNP:Fe_3O_4:PEG上转换发光纳米复合物在水溶液中具有较好的稳定性,能在各种溶液中长时间稳定存在;制备好的PEDOT:UCNP:Fe_3O_4:PEG溶液电位接近0;2)磁共振成像结果显示在一定的浓度梯度内,随着材料浓度的增加,PEDOT:UCNP:Fe_3O_4:PEG溶液的磁共振信号逐渐降低。3)PEDOT:UCNP:Fe_3O_4:PEG在体外具有强大的光热能力;4)体外细胞毒性实验结果显示PEDOT:UCNP:Fe_3O_4:PEG在较高浓度时对细胞亦未见明显毒性作用。5)对比上转换发光纳米材料在瘤内注射前后的T2 WI图片,可见在瘤内注入PEDOT:UCNP:Fe_3O_4:PEG溶液后肿瘤部位T2信号明显降低,肿瘤包膜完整,PEDOT:UCNP:Fe_3O_4:PEG溶液在瘤内分布均匀;6)在PEDOT:UCNP:Fe_3O_4:PEG溶液孵育4T1细胞24小时后,共聚焦显微镜下可见大量上转换发光颗粒在细胞内富集;7)瘤内注入PEDOT:UCNP:Fe_3O_4:PEG之后,在近红外光激发下,肿瘤部位可见明显绿色荧光;结论:PEDOT:UCNP:Fe_3O_4:PEG纳米材料可以在各种溶液中稳定存在,展现出极好的稳定性。细胞增殖实验结果表明,PEDOT:UCNP:Fe_3O_4:PEG复合物没有明显的生物毒性。同时具有较好的磁共振成像能力。近红外光照射下,由于PEDOT:UCNP:Fe_3O_4:PEG所具有的独特的上转换发光能力,可以作为上转换光学成像的探针;同时,PEDOT:UCNP:Fe_3O_4:PEG也是一种高效的光热介质。因此,PEDOT:UCNP:Fe_3O_4:PEG纳米复合材料可以用于肿瘤的多模成像,在肿瘤的光热治疗方面也有巨大的潜力。第二部分稀土上转换发光纳米复合材料用于肿瘤的光热治疗的研究目的:稀土上转换发光纳米复合材料用于肿瘤的光热治疗的研究。方法:1)将同浓度的PEDOT:UCNP:Fe_3O_4:PEG溶液孵育小鼠乳腺癌(4T1)细胞6小时后,用梯度功率的近红外光(808nm)照射5分钟后,培养24小时后用MTT法测定细胞存活率。2)将小鼠乳腺癌(4T1)细胞在小鼠背部皮下注射建立荷瘤小鼠模型。3)将荷瘤小鼠随机分为四组,治疗前测量瘤体。实验组(d组)予以PEDOT:UCNP:Fe_3O_4:PEG瘤内注射及激光照射;对照组中,a组予以等量生理盐水瘤内注射,b组仅予以PEDOT:UCNP:Fe_3O_4:PEG瘤内注射,c组予以生理盐水瘤内注射及激光照射。治疗后每两天测量瘤体大小,比较不同组间瘤体变化,评估治疗效果。4)实验进行过程中,每天观察动物活动、进食、排便及精神状态;实验完成后,取各组实验小鼠的主要器官,通过HE染色行组织学检查,评估纳米材料毒性。结果:1)在808nm激光照射下,在激光功率达到1W/cm2,基本无细胞存活,在细胞水平显示出良好的光热治疗效果。2)荷瘤小鼠模型在一周内建立完成。3)在经过光热治疗后,实验组小鼠肿瘤在一天后完全消失,60天内无小鼠死亡及肿瘤复发;其余对照组肿瘤持续生长,并都在60天内死亡;4)在实验过程中,实验小鼠无异常行为及死亡,实验完成后各组小鼠主要器官的组织学检查无明显异常。结论:PEDOT:UCNP:Fe_3O_4:PEG在细胞水平光热治疗中展现出出色的治疗效果,在活体光热治疗试验中,PEDOT:UCNP:Fe_3O_4:PEG纳米复合材料未显示出明显毒性并展现出极好的疗效。所以PEDOT:UCNP:Fe_3O_4:PEG上转换发光纳米复合物可以作为肿瘤多模成像并指导治疗的介质。
[Abstract]:The first part is the preparation and application of rare earth up-conversion luminescent nanocomposites for multimode imaging. The purpose of this study is to explore the feasibility and value of the use of rare-earth upconversion luminescent nanocomposite PEDOT:UCNP:Fe_3O_4:PEG for multimode imaging. Method: 1) up conversion nano particles Na YF4 (Y:Yb:Er) was prepared by high temperature thermal decomposition method. =78%: 20%: 2%) the water solubility of the nanoparticles was added with the OA-PAA polymer modified nanoparticles; the core (3,4- subethoxy thiophene) - polyphenols (PEDOT:PSS) was used as the core, and the outer layer was coated with OA-PAA modified rare earth upconversion luminescent nanomaterials (UCNPs) and two mercapto acid (DMSA) modified iron oxide (Fe_3O_4), and then through the layer. The surface of the nano particles is modified by the coating of polyacrylic acid (PAA), polycyclic aromatic hydrocarbons (PAH) and polyethylene glycol (PEG) layer. Finally, the PEDOT:UCNP:Fe_3O_4:PEG upconversion nanocomposites with good biocompatibility are obtained, and the morphology and potential of the.2 are investigated. The PEDOT:UCNP:Fe_3O_4:PEG of different concentration gradient is magnetically shared. The scanning of the vibrating T2 sequence, detecting its magnetic resonance imaging properties.3) take three groups of gradient concentration PEDOT:UCNP:Fe_3O_4:PEG solution and deionized water each 1ml, irradiate the 808nm laser for 5 minutes, use the thermal imager to record the temperature change, and detect its photothermal effect; 4) through the in vitro cytotoxicity test (MTT) on the PEDOT:UCNP:Fe_3O_4:PEG granules in vitro Toxicity study.5) injected PEDOT:UCNP:Fe_3O_4:PEG tumor into the tumor bearing mouse model, scanned the magnetic resonance T2 sequence and detected its magnetic resonance imaging properties.6). After 24 hours of incubating the breast cancer (4T1) cells in mice, PEDOT:UCNP:Fe_3O_4:PEG was used to dye the nucleus with DAPI, and the level of PEDOT:UCNP:Fe_3O_4:PEG at the cell level was examined by the fluorescence microscope. Imaging ability.7) injected the PEDOT:UCNP:Fe_3O_4:PEG solution tumor into the tumor bearing mouse model and detected its upconversion imaging properties with the Maestro EX (CRi.Inc.) living imaging system with 980nm excitation light source: 1) transmission electron microscopy (TEM) showed that the upconversion luminescent nanoparticles (UCNPs) were mono dispersed nanocrystals with an average diameter of about 30nm. After the assembly and layer modification, the PEDOT:UCNP:Fe_3O_4:PEG upconversion nanocomposites have good stability in the aqueous solution and can exist for a long time in various solutions; the prepared PEDOT:UCNP:Fe_3O_4:PEG solution potential is close to 0; 2) the magnetic resonance imaging results show in a certain concentration gradient with the concentration of the material. In addition, the magnetic resonance signal of PEDOT:UCNP:Fe_3O_4:PEG solution gradually decreased.3) PEDOT:UCNP:Fe_3O_4:PEG has a strong photothermal ability in vitro; 4) in vitro cytotoxicity test results showed that PEDOT:UCNP:Fe_3O_4:PEG had no obvious toxic effect on the cells at high concentration.5) compared with the upconversion luminescent nanomaterials before intratumoral injection. After the injection of PEDOT:UCNP:Fe_3O_4:PEG solution in the T2 WI picture, the T2 signal of the tumor site was obviously reduced, the tumor envelope was complete and the PEDOT:UCNP:Fe_3O_4:PEG solution was evenly distributed in the tumor. 6) after incubating 4T1 cells in PEDOT:UCNP:Fe_3O_4:PEG solution for 24 hours, a large number of upconversion luminescent particles were found in the cell under confocal microscopy. Enrichment; 7) after intratumoral injection of PEDOT:UCNP:Fe_3O_4:PEG, the tumor site was obviously green fluorescence under near infrared light excitation. Conclusion: PEDOT:UCNP:Fe_3O_4:PEG nano materials can be stable in various solutions and exhibit excellent stability. The results of cell proliferation experiment show that the PEDOT:UCNP:Fe_3O_4:PEG complex has no obvious birth. At the same time, it has good magnetic resonance imaging ability. Under the near infrared radiation, the unique upconversion luminescence ability of PEDOT:UCNP:Fe_3O_4:PEG can be used as a probe for upconversion optical imaging. At the same time, PEDOT:UCNP:Fe_3O_4:PEG is also an efficient photothermal medium. Therefore, PEDOT:UCNP:Fe_3O_4:PEG nanocomposites are used. The multimode imaging of tumors can also have great potential in the photothermal treatment of tumors. Second parts of the rare earth upconversion luminescent nanocomposites are used for the photothermal treatment of tumors. The rare earth upconversion luminescent nanocomposites are used to study the photothermal treatment of tumors. Method: 1) the same concentration of PEDOT:UCNP:Fe_3O_4: The mice breast cancer (4T1) cells were incubated with PEG solution for 6 hours. After 5 minutes of irradiation with gradient power of near infrared light (808nm), the cell survival rate was determined by MTT method for 24 hours. The mice breast cancer (4T1) cells were injected subcutaneously in the mouse back to establish the tumor bearing mouse model.3). The tumor bearing mice were randomly divided into four groups, and the tumor body was measured before treatment. The group (Group D) was given PEDOT:UCNP:Fe_3O_4:PEG intratumoral injection and laser irradiation; in the control group, group A was given intratumoral injection of equal amount of saline, group B was injected only with PEDOT:UCNP:Fe_3O_4:PEG intratumoral injection, group C was injected with intratumoral injection of saline and laser irradiation. After treatment, the size of tumor body was measured every two days, and the changes of different groups of tumor bodies were compared and the treatment of treatment was evaluated. .4) during the experiment, we observed animal activities, feeding, defecation and mental state every day. After the experiment, the main organs of the mice were taken and the toxicity of nanomaterials was evaluated through HE staining. Results: 1) the laser power reached 1W/cm2 under the 808nm laser irradiation, and the cell level was basically no cell survival. The mice model of tumor bearing mice was set up to complete.3 in one week. After photothermal treatment, the tumor of mice in the experimental group disappeared completely after one day, and no mice died and the tumor recurred within 60 days. The other control groups continued to grow, and all died within 60 days, and 4) in the course of the experiment, the experimental mice had no abnormal action. There were no obvious abnormalities in the histological examination of the main organs of each group after the experiment. Conclusion: PEDOT:UCNP:Fe_3O_4:PEG showed excellent therapeutic effect in the treatment of cell level photothermal treatment. In vivo photothermal therapy, PEDOT:UCNP:Fe_3O_4:PEG nanocomposite did not show obvious toxicity and showed excellent efficacy. Therefore, the PEDOT:UCNP:Fe_3O_4:PEG upconversion luminescent nanocomposite can be used as a multi-mode imaging and guiding medium for tumor therapy.
【学位授予单位】:苏州大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R73-3

【相似文献】

相关期刊论文 前2条

1 王丹;钱骏;何赛灵;;掺Gd上转换发光纳米棒的细胞成像应用[J];科学通报;2013年07期

2 ;[J];;年期

相关会议论文 前10条

1 徐莉;关彩虹;于孟斌;金亮;陈高云;;上转换发光技术在生化快速检测中的应用研究[A];公共安全中的化学问题研究进展(第二卷)[C];2011年

2 陈大钦;王元生;余运龙;刘锋;黄萍;;钕掺杂的纳米结构玻璃陶瓷的红外激发紫外上转换发光[A];第11届全国发光学学术会议论文摘要集[C];2007年

3 冷雪松;徐玉恒;;三掺Nd:Yb:Ho:LiNbO_3中的能量上转焕发光[A];第十六届全国晶体生长与材料学术会议论文集-03激光和非线性光学晶体[C];2012年

4 刘熠;刘倩;冯玮;李富友;;上转换发光生物成像技术及应用研究[A];第八届全国化学生物学学术会议论文摘要集[C];2013年

5 邹先梅;刘熠;朱幸俊;姚立明;冯玮;李富友;;808nm激发的上转换发光纳米复合探针用于次氯酸的检测[A];中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装[C];2014年

6 赵谡玲;侯延冰;徐叙tb;;不同基质材料中铒离子的上转换发光特性[A];第九届全国发光学术会议摘要集[C];2001年

7 潘秀红;;悬浮技术制备稀土掺杂钛酸盐玻璃及其上转换发光性能[A];中国空间科学学会空间材料专业委员会2011学术交流会论文集[C];2011年

8 高伟;李娇;涂银勋;高当丽;田宇;郑海荣;;水热合成六方相NaYbF4:Pr3+晶体上转换发光特性研究[A];2011西部光子学学术会议论文摘要集[C];2011年

9 朱幸俊;李富友;;多功能稀土上转换发光纳米复合结构用于小动物多模式成像[A];中国化学会第29届学术年会摘要集——第05分会:无机化学[C];2014年

10 董浩;王也夫;李洋;张超;孙聆东;严纯华;;稀土离子上转换发光的调控及其光敏应用[A];中国化学会第29届学术年会摘要集——第06分会:稀土材料化学及应用[C];2014年

相关博士学位论文 前10条

1 宋恩海;Yb~(3+)/Mn~(2+)共掺杂钙钛矿氟化物ABF_3可调宽带上转换发光研究[D];华南理工大学;2015年

2 巩思宇;单晶钛酸铅纳米纤维的稀土掺杂、复合及其光学性能研究[D];浙江大学;2016年

3 商晓颖;飞秒光与连续光激发的掺Er~(3+)纳米材料上转换机制与操控[D];华东师范大学;2016年

4 崔越;稀土掺杂上转换发光纳米材料NaREF_4制备、优化及应用的研究[D];北京交通大学;2016年

5 李艾华;飞秒激光激发稀土掺杂铌酸锂单晶的上转换发光研究[D];哈尔滨工业大学;2010年

6 祝汉成;高亮度、高热稳定性及抗辐射稀土掺杂铝酸盐粉体上转换发光及其机理研究[D];东北师范大学;2014年

7 郑克志;稀土掺杂微纳材料中高阶多光子上转换发光及其电子布居过程的研究[D];吉林大学;2011年

8 董斌;稀土掺杂氧化铝粉末的上转换发光特性研究[D];大连理工大学;2007年

9 肖思国;稀土掺杂超微材料的制备与上转换发光研究[D];湘潭大学;2006年

10 庞涛;稀土掺杂上转换发光材料制备与发光性质研究[D];大连海事大学;2010年

相关硕士学位论文 前10条

1 廖佳燕;光子晶体及金属银纳米颗粒增强稀土掺杂NaYF_4纳米颗粒上转换发光性质研究[D];昆明理工大学;2015年

2 刘雪娥;稀土掺杂氟化物纳米晶的合成及发光性能研究[D];昆明理工大学;2015年

3 赵红伟;含氧酸盐基质光转换荧光粉的发光性能研究[D];大连交通大学;2015年

4 翟梓会;试验优化设计稀土离子掺杂钼酸盐荧光粉发光性质的研究[D];大连海事大学;2015年

5 关莹;镱离子Yb~(3+)掺杂钒/钼酸盐的合成和发光性能研究[D];苏州大学;2015年

6 王欣;稀土上转换发光纳米材料用于近红外光激发的光动力治疗联合肿瘤基因治疗的研究[D];苏州大学;2015年

7 陶冶;销镱铥掺杂12CaO·7Al_2O_3的制备及上转换发光性能研究[D];哈尔滨工业大学;2015年

8 廖艳平;铒镱锂掺杂AZO陶瓷的制备及发光性能研究[D];哈尔滨工业大学;2015年

9 潘云星;稀土掺杂Ba_(0.8)Sr_(0.2)TiO_3陶瓷的制备及其上转换发光性能的研究[D];哈尔滨工业大学;2015年

10 徐艳玲;稀土离子(Yb~(3+),Tm~(3+),Er~(3+))共掺杂YAG单晶光纤上转换发光特性研究[D];浙江大学;2015年



本文编号:1934490

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/zlx/1934490.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户27e56***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com