针对B细胞相关恶性肿瘤的激酶抑制剂的药物学研究
[Abstract]:1. the discovery of high activity, high selective PI3K delta kinase inhibitors and PI3K Delta /VPS34 double inhibitors for B cell malignancies and the discovery of PI3K delta mainly expressed in leukocytes and overexpression in B cell related malignant tumor cells such as chronic lymphoblastic leukemia and acute myelocytic leukemic disease. B- cell related cancer has a close relationship, so PI3K delta kinase has been widely concerned in the field of drug research in recent years. This paper has studied its mechanism from drug discovery to drug action from two aspects. Chapter 1: the discovery of PI3K delta kinase selective inhibitor PI3KD-IN-015 for B cell malignant tumor. In computer aided design and drug chemical methods, we found a competitive ATP PI3K delta inhibitor PI3KD-IN-015. Both biochemical experiments and intracellular experimental results showed that PI3KD-IN-015 had better selectivity to PI3K Delta and did not inhibit most of the kinases in the kinase group. By inhibiting the PI3K delta mediated signal pathway, PI3KD- IN-015 can inhibit the proliferation of various B cell related cancer cell lines to a certain extent, and can induce apoptosis and autophagy in the malignant tumor cell lines of B cells. In addition, the combination of the autophagy inhibitor Bafilomycin can enhance the anti proliferation effect of PI3KD-IN-015 to inhibit the chronic lymphocytic leukemia. The proliferation of primary cells in human and acute myeloid leukocytes. These results suggest that PI3KD-IN-015 may be a potential candidate for B cell related malignancies. Second chapter: the present study of the PI3K Delta /VPS34 kinase double inhibitor PI3KD/V-IN-01 in the target B cell malignant tumor, although the first selective PI3K delta suppression. The preparation CAL1 01 has achieved clinical success, but the results of clinical trials and basic studies show that inhibition of PI3K delta itself has no strong killing effect on the cell lines of B cells, and a similar phenomenon has been observed in the characterization of PI3KD-IN-015. One possible reason is the inhibition of PI3K delta to induce cell autophagy. Protective cells escape death. Since class III P13K subtype PIK3C3/Vps34 plays an important role in the initiation and development of autophagy, we judge that a double inhibitor of PI3K Delta and Vps34 may enhance the antiproliferative activity of the PI3K8 targeting inhibitor we observed. A highly active ATP competitive PI3K Delta /Vps34 double inhibitor PI3KD/V-IN-01, which is 6 nM and 19 nM. for the other P13K subtypes of PI3K8 and Vps34, shows 10-1500 times the selectivity for PI3KD/V-IN-01, and does not inhibit other kinases in the kinase group. The type I P13K subtype showed a 30-300 fold selectivity. Compared with the selective PI3K8 inhibitor CAL-101 and the selective Vps34 inhibitor VPS34-IN-1, the PI3KD/V-IN-01 showed a better anti chronic lymphocytic leukemia cell line and the proliferation activity of the acute myeloid leukemia cell line Burkitt lymphoma cell line. In addition, we also observed that the FLT3-ITD acute myeloid leukemia cell line is more sensitive to PI3KD/V-IN-01 than the acute myeloid leukemia cell lines expressing wild type FLT3. In the xenograft mice model of acute myeloid leukemia cell line MV4-11, PI3KD/V-IN-01 showed a dose dependent anti tumor effect. The results suggest that double inhibition of PI3K Delta and Vps34 may be an effective method to improve the antitumor effect of P13K8 inhibitors..2. for the high activity and high selectivity of BCR-ABL kinase inhibitor CHMFL-ABL-053 for chronic myelocytic leukemia, BCR-ABL fusion tyrosine kinin tumor protein is the cause of chromosome positive in Philadelphia The key factors of sexual myelocytic leukemia (Ph+CML), as a target for new drug development, have been a great deal of exploration for BCR-ABL. However, most of the inhibitors of BCR-ABL kinase are multiple target inhibitors, especially they can strongly inhibit the activity of cKIT similar to the ABL kinase structure. In order to further explore A The physiological and pathological effects of BL kinase provide a more selective inhibitor. We begin to modify the two pyrimidine and pyrimidine core skeleton of a multi target ABL inhibitor, GNF-7, and modify it by drug chemistry. A highly active and highly selective BCR-ABL inhibitor, CHMFL-ABL-053, is found, and the ICso of ABL1 kinase is 70. NM. in the DiscoveRx's KinomeScanTM selective test, CHMFL-ABL-053 has a high selectivity in the kinase group. S score (1) =0.02. and CHMFL-ABL-053 have no obvious inhibitory activity on the common side target of Imatinib, Nilotinib, Botutinib, and Dasatinib, which are commonly used as the BCR-ABL kinase inhibitors. CR-ABL's autophosphorylation (ECso about 100 nM) and its downstream STAT5, Crkl and ERK phosphorylation, CHMFL-ABL-053 can inhibit the proliferation of chronic myelogenous leukemia cell line K562 (GI50:14 nM), KU812 (GI50:25), and also induce cell apoptosis. At the same time, it can also induce apoptosis. The results of the kinetic study showed that the half-life of CHMFL-ABL-053 was greater than that of 4H and had 24% bioavailability. In the mouse model of xenograft tumor inoculated with K562 cells, the dose of 50mg/kg/ day dose almost completely inhibited the growth of tumor in mice. As a potential and effective candidate for chronic myelogenous leukemia, CHMFL-ABL-053 is currently being used. A large number of pre clinical drug resistance assessments were carried out.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R730.5
【相似文献】
相关期刊论文 前10条
1 方芳,,刘景生;蛋白激酶抑制剂[J];基础医学与临床;1996年02期
2 刘廷林;谢焕章;魏于全;杨胜勇;;探索应用反向对接技术研究蛋白激酶抑制剂选择性的可行性[J];药学学报;2009年07期
3 黄卫;曾富华;胡晓敏;;蛋白激酶抑制剂在抗肿瘤药物中的应用[J];生命的化学;2007年02期
4 欧武陵;胡胜;于丁;;癌症治疗的小分子激酶抑制剂的药物敏感性[J];中国肿瘤;2010年10期
5 史宁;韦林毅;吴久鸿;;小分子抗肿瘤蛋白激酶抑制剂的研究进展[J];中国药学杂志;2011年23期
6 徐岩;王广树;孙薇;杨晓虹;徐利保;;小分子IGF-1R抑制剂的研究进展[J];药学学报;2008年10期
7 陈建超;孙悦;周志旭;孙铁民;;应用于心血管疾病的大鼠肉瘤蛋白同源蛋白激酶抑制剂的研究进展[J];中国药物化学杂志;2014年02期
8 王伊文;刘艳芹;谢进;张英鸽;;影响癌症对小分子激酶抑制剂敏感性的因素[J];国际药学研究杂志;2010年02期
9 刘兴赋;傅晓钟;杨坤;;抗肿瘤吡咯三嗪类激酶抑制剂的合成[J];贵阳医学院学报;2014年01期
10 ;基因治疗可逆转心功能有不全倾向活体家兔心室递送编码β肾上腺素能受体激酶抑制剂的基因[J];口岸卫生控制;2001年04期
相关会议论文 前6条
1 王鹏;杨加宾;孙春龙;李鲁申;胡兵;张蕊;吉民;;小分子ALK激酶抑制剂的研究进展[A];2012年中国药学大会暨第十二届中国药师周论文集[C];2012年
2 丁素菊;刘康;毕晓莹;;Rho激酶介导的缺血再灌注微血管损伤的机制初探及Rho激酶抑制剂的保护作用[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
3 崔国惠;李新刚;陈燕;吴青;;TSA抑制NB4细胞去乙酰化酶活性并促进细胞周期素激酶抑制剂表达[A];中华医学会第八次全国血液学学术会议论文汇编[C];2004年
4 徐利保;杨晓虹;孙薇;周小平;徐岩;;Rho激酶抑制剂的研究进展[A];东北三省生物化学与分子生物学学会2008年学术交流会论文摘要[C];2008年
5 张宁;李刚;肖波;刘运海;蔡艳;孙新刚;梁静慧;;Rho激酶抑制剂对EAN发病的影响[A];第十一届全国神经病学学术会议论文汇编[C];2008年
6 马金贵;黄河;蒙凌华;柳红;丁健;;新型Src激酶抑制剂PH006的抗肿瘤作用研究[A];2009医学前沿论坛暨第十一届全国肿瘤药理与化疗学术会议论文集[C];2009年
相关重要报纸文章 前6条
1 本报特约撰稿 徐铮奎;国内替尼类开发思进取[N];医药经济报;2014年
2 本报特约撰稿人 陆志城;抗艾药物研发目光投向宿主蛋白抑制剂[N];医药经济报;2005年
3 翻译 李勇;激酶抑制剂时代[N];医药经济报;2014年
4 伊遥 编译;蛋白激酶抑制剂:揭开CNS药物开发新篇章[N];医药经济报;2012年
5 编译 李勇;CLL新药研发进入激酶抑制剂时代[N];中国医药报;2014年
6 晓艳;眼皮底下的抗癌新药[N];医药经济报;2002年
相关博士学位论文 前10条
1 段衍超;Wee1激酶抑制剂MK-1775抗急性淋巴细胞白血病的效应及机制研究[D];山东大学;2015年
2 张辛;两种小分子化合物抗癌作用的发现与机制研究[D];上海交通大学;2014年
3 刘晓川;针对B细胞相关恶性肿瘤的激酶抑制剂的药物学研究[D];中国科学技术大学;2016年
4 杜娟;计算机辅助激酶抑制剂的分子设计和模拟[D];兰州大学;2011年
5 张蕾磊;应用质谱技术筛选激酶抑制剂[D];中国协和医科大学;2008年
6 夏冬辉;原癌蛋白PIM-1激酶抑制剂的分子模拟研究[D];西北大学;2012年
7 秦晋;几类激酶抑制剂的分子模拟研究[D];兰州大学;2010年
8 王增军;附睾蛋白激酶抑制剂Eppin和精囊蛋白Semenogelin 1相互关系研究[D];南京医科大学;2006年
9 宋云;Rho激酶抑制剂法舒地尔对Aβ诱导痴呆大鼠模型的保护作用及其机制研究[D];山东大学;2011年
10 李冬冬;喹唑啉类化合物的设计、合成及生物活性评价[D];南京大学;2014年
相关硕士学位论文 前10条
1 肖元春;吲哚类Rho激酶抑制剂的计算机研究[D];大连理工大学;2015年
2 韩春晓;基于化学信息学的B-Raf激酶抑制剂计算研究[D];大连理工大学;2015年
3 王欣然;异喹啉类和4-氨基吡啶类Rho激酶抑制剂的研究[D];天津大学;2014年
4 孟兰芳;用于治疗晚期肺癌的新型ALK和c-Met激酶抑制剂的研发[D];复旦大学;2013年
5 吴文;新型大环结构的激酶抑制剂的设计、合成及其生物活性研究[D];中南大学;2011年
6 范永剑;1,3,4-VA二唑类KDR激酶抑制剂的设计、合成与活性研究[D];浙江大学;2007年
7 徐利保;小分子c-Fms激酶抑制剂的设计、合成与筛选[D];吉林大学;2009年
8 赖康英;Jak3激酶抑制剂CP690550及其衍生物的设计、合成与筛选[D];沈阳药科大学;2008年
9 段志刚;磺酰胺基取代的嘧啶联苯类杂环衍生物作为潜在的变构激酶抑制剂的设计与合成[D];吉林大学;2014年
10 谢云丰;新型B-Raf~(V600E)激酶抑制剂的设计、合成及生物活性[D];中南大学;2013年
本文编号:2147228
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2147228.html