1、ZEB1通过诱导ER-α启动子甲基化调控乳腺癌抗雌激素治疗耐药的机理研究 2、新型VEGFR2小分子抑制剂YLL54
[Abstract]:Breast cancer is an estrogen-dependent tumor. Estrogen stimulates the proliferation of breast cancer cells by binding to estrogen receptors and activating specific downstream signaling pathways. Antiestrogen therapy, as an important adjuvant therapy for breast cancer, can significantly improve the prognosis of patients. All breast cancer can be treated with anti-estrogen therapy. Congenital and acquired resistance to anti-estrogen drugs can lead to anti-estrogen resistance and lead to treatment failure. Therefore, to clarify the molecular mechanism of anti-estrogen resistance will greatly promote the development of anti-estrogen therapy for breast cancer and improve the treatment of breast cancer patients. The abnormal expression of ER-alpha is closely related to epigenetic regulation. However, the specific mechanism of the down-regulation of ER-alpha expression is still unclear. In this study, we found that the transcription factor ZEB1 can pass through. Recruitment of promoters of methyltransferase DNMT3B and deacetylase HDAC1 to ER-alpha promoters promotes hypermethylation and induces down-regulation of ER-alpha expression in breast cancer cells, leading to resistance to estrogen therapy. First, we found a 267 BP CpG island in the promoter region of ER-alpha gene by online database prediction analysis. Chromatin immunoprecipitation assay with antibodies to DNMT3B and HDAC1 demonstrated that the Cp G island was a potential differentially methylated regulatory region DMR. In our previous study, ZEB1 was found to be negatively correlated with the expression of ER-alpha in breast cancer tissues. Thus, we examined the methylation of ER-alpha promoter in breast cancer cell lines MDA-MB-231/SUM-159 and MCF-7/ZR75-1, and functionally demonstrated the methylation regulation of ER-alpha promoter by ZEB1 overexpression and silencing. Treatment of breast cancer cells with tamoxifen and fulvestrant, a representative antiestrogen drug, demonstrated that ZEB1 overexpression could down-regulate the expression of ER-alpha in breast cancer cells and reduce the sensitivity of breast cancer cells to antiestrogen drugs; on the contrary, silencing ZEB1 expression could partially restore the expression of ER-alpha. Mechanisms have shown that ZEB1 can form protein complexes with methyltransferase DNMT3B and deacetylase HDAC1 on ER-a promoter simultaneously, which induces DNA hypermethylation, inhibits ER-a transcription and silences ER-a expression. More importantly, ZE is knocked down by RNA interference. After the expression of B1, the demethylation of ER-alpha promoter was induced, and the expression of ER-alpha was partly restored, which increased the sensitivity of breast cancer to anti-estrogen therapy. Promoter hypermethylation was positively correlated with ER-alpha in ER-alpha-positive cases, but the opposite was true in ER-alpha-positive cases. In a mouse transplanted tumor model, we further demonstrated that down-regulation of ZEB1 partially restored the expression of ER-alpha and increased the sensitivity of breast cancer to anti-estrogen therapy. ZeB1 and its downstream signaling pathways may be new targets for breast cancer treatment. Targeting ZEB1 and combining with specific inhibitors of epigenetic regulation may be a new strategy to overcome the resistance of breast cancer to estrogen therapy. Vascular endothelial growth factor (VEGF) signaling pathway plays a key role in tumor angiogenesis. As an effective anti-angiogenesis drug, small molecule inhibitor targeting vascular endothelial growth factor receptor (VEGF R2) has been widely used in the clinical treatment of malignant tumors. Sorafenib and sunitinib are small molecule drugs for the treatment of advanced renal cell carcinoma. Although ideal results have been obtained in preclinical studies and initial clinical trials, with the gradual application of these drugs in clinic, some unknown side effects have been found in most of them, and their efficacy needs to be further verified. Therefore, the development of novel and low toxic small molecule inhibitors of VEGFR2 is still a hot research topic. In this project, we first used sorafenib as the main structure of the drug, using computer-aided design, biochemical synthesis methods, to obtain 25 novel small molecule inhibitors targeting VEGFR2. Then, sorafenib as a positive control, the use of. After screening the anti-angiogenesis effects of these compounds in transgenic zebrafish (Fli-1:EGFP) model, a high-efficiency and low-toxicity small molecule inhibitor of VEGFR2, YLL545, was obtained. Next, we treated HUVECs of human umbilical vein endothelial cells with different concentrations of YLL545 and sorafenib as positive control. The IC50 of YLL545 inhibited the proliferation of HUVECs was 5.844 mu M. Further studies using Ed U cell proliferation assay showed that YLL545 inhibited the proliferation of HUVECs by reducing S-phase DNA synthesis. In addition, scratch and Transwell experiments suggested that YLL545 could inhibit the migration and invasion of HUVECs cells. In addition, we need to clarify the molecular mechanism of YLL545 inhibiting angiogenesis. WB assay showed that YLL545 significantly inhibited the phosphorylation of VEGFR2 induced by VEGF, and YLL545 significantly inhibited the angiogenesis of HUVECs. Protein phosphorylation levels of downstream signal regulators, including extracellular regulated protein kinase ERK, signal transducer and activator of transcription STAT3 and rapamycin target protein M TOR, were measured. In addition, using RT2 Profiler PCR Array, we also found that YLL545 could inhibit the expression of other angiogenesis-related genes through the non-dependent pathway of VEGFR2. Because breast cancer cells also express VEGFR2, m TOR, STAT3 and ERK, YLL545 has the potential to target tumor cells. Therefore, we chose breast cancer cell MDA-MB-231 for our study. CCK8, Ed U and platelet cloning experiments have all proved that 2.5 mu YLL545 is effective. YLL545 could also promote the apoptosis of MDA-MB-231 cells. The IC50 of YLL545 inhibited the proliferation of normal mammary epithelial cells and hepatic epithelial cells were 35.83 and 33.40 mu M, respectively, indicating that YLL545 had little toxicity to normal tissue cells, and its specific inhibitory effect on tumor was not related to cytotoxicity. Finally, we validated the inhibitory effect of YLL545 on angiogenesis in vivo in mice transplanted tumor model. The results showed that oral administration of YLL545 50 mg/kg/d could inhibit angiogenesis of breast cancer transplanted tumor, and then inhibit tumor growth, the inhibitory rate was 50%. Moreover, compared with the control group, YLL545 experimental group mice did not show any toxic and side effects. YLL545, as a novel, safe and effective angiogenesis inhibitor, is expected to be used in the treatment of cancer, especially breast cancer.
【学位授予单位】:重庆医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R737.9
【相似文献】
相关期刊论文 前10条
1 黄啸原;用“印度阅兵”形容乳腺癌合适吗?[J];诊断病理学杂志;2001年02期
2 张嘉庆,王殊,乔新民;乳腺癌的现状和远景[J];中华外科杂志;2002年03期
3 张维彬,汪波,石灵春;中医药在现代乳腺癌治疗中的运用[J];中国中西医结合急救杂志;2002年01期
4 薛志勇;食物与乳腺癌[J];山东食品科技;2002年04期
5 王旬果,王建军,郑国华;乳腺癌相关标志物的研究进展[J];山东医药;2002年33期
6 陆尚闻;;男人也患乳腺癌[J];环境;2003年12期
7 ;新技术清晰拍摄早期乳腺癌细胞[J];上海生物医学工程;2005年04期
8 田富国;郭向阳;张华一;;乳腺癌诊治研究新进展[J];肿瘤研究与临床;2005年S1期
9 马涛,谷俊朝;血管内皮生长因子与乳腺癌的临床研究进展[J];国外医学(外科学分册);2005年01期
10 郭庆良,谷俊朝;乳腺癌和瘦素相关性研究进展[J];国外医学.外科学分册;2005年03期
相关会议论文 前10条
1 于永利;;抗乳腺癌免疫治疗融合蛋白[A];中国免疫学会第四届学术大会会议议程及论文摘要集[C];2002年
2 郭红飞;;中医治疗乳腺癌的策略[A];江西省中医、中西医结合肿瘤学术交流会论文集[C];2012年
3 庞朋沙;伍会健;;乳腺癌治疗靶标的研究进展[A];北方遗传资源的保护与利用研讨会论文汇编[C];2010年
4 陆劲松;邵志敏;吴炅;韩企夏;沈镇宙;;新型维甲酸抑制乳腺癌细胞的生长及诱导凋亡的机制研究[A];2000全国肿瘤学术大会论文集[C];2000年
5 刘爱国;胡冰;;乳腺癌临床治疗进展[A];安徽省抗癌协会第四次代表大会暨乳腺癌、肺癌专业委员会成立会议、安徽省肿瘤防治进展学术研讨会论文汇编[C];2001年
6 张嘉庆;王殊;乔新民;;乳腺癌的现状和远景[A];第一届全国中西医结合乳腺疾病学术会议论文汇编[C];2002年
7 刘清俊;;乳腺癌综合治疗的新进展[A];山西省抗癌协会第六届肿瘤学术交流会论文汇编[C];2003年
8 邵志敏;;21世纪乳腺癌治疗的展望[A];第三届中国肿瘤学术大会教育论文集[C];2004年
9 陈松旺;张明;;乳腺癌治疗的回顾与展望[A];西部地区肿瘤学学术会议论文汇编[C];2004年
10 白霞;傅建新;丁凯阳;王兆钺;阮长耿;;组织因子途径抑制物-2在乳腺癌细胞中的表达研究[A];第10届全国实验血液学会议论文摘要汇编[C];2005年
相关重要报纸文章 前10条
1 ;血检有望揭示乳腺癌治疗效果[N];医药经济报;2004年
2 记者 郑晓春;乳腺癌细胞扩散基因被找到[N];科技日报;2007年
3 中国军事医学科学院肿瘤中心主任 宋三泰;乳腺癌有了新疗法[N];中国妇女报;2002年
4 王艳红;抑制DNA修补可消灭乳腺癌细胞[N];医药经济报;2005年
5 詹建;乳腺癌饮食 两个时期不一样[N];中国中医药报;2006年
6 辛君;乳腺癌扩散基因“浮出水面”[N];大众卫生报;2009年
7 记者 毛黎;美发现有效抑制乳腺癌细胞生长的分子[N];科技日报;2010年
8 记者 吴春燕 通讯员 王丽霞;乳腺癌治疗将有新途径[N];光明日报;2011年
9 王乐 沈基飞;我科学家发现导致乳腺癌耐药的新标志物[N];科技日报;2011年
10 刘霞;一种天然分子能阻止乳腺癌恶化[N];科技日报;2011年
相关博士学位论文 前10条
1 柴红燕;疾病状态下CYP4Z1和4A的生物学行为及其药物干预研究[D];武汉大学;2012年
2 李凯;ID(inhibitor of DNA binding)家族蛋白调控乳腺细胞的分化并影响乳腺癌的预后[D];复旦大学;2014年
3 江一舟;乳腺癌新辅助化疗前后基因变异检测及其功能论证[D];复旦大学;2014年
4 马邵;酪氨酸去磷酸化增强表皮生长因子受体在乳腺癌治疗中靶向性的研究[D];山东大学;2015年
5 姚若斯;精氨酸甲基转移酶PRMT7诱导乳腺癌细胞发生表皮—间质转换及转移的作用机制研究[D];东北师范大学;2015年
6 侯培锋;α-酮戊二酸二甲酯(DM-2KG)上调缺氧诱导因子-1α(HIF-1α)诱发高致瘤性干细胞样乳腺癌细胞机制研究[D];福建医科大学;2014年
7 李丽丽;分泌蛋白SHON调控乳腺癌细胞EMT的分子机制研究[D];东北师范大学;2015年
8 陈丽艳;PI3K抑制剂联合组蛋白去乙酰化酶抑制剂对乳腺癌协同杀伤作用的分子机制研究[D];延边大学;2015年
9 朴俊杰;乳腺癌差异基因筛选及PAIP1对其生物学行为的影响[D];延边大学;2015年
10 汪[?如;染色体6q25.1区域基因多态性与乳腺癌遗传易感性的关联研究[D];南方医科大学;2015年
相关硕士学位论文 前10条
1 杜文英;乳腺癌分子亚型的临床与病理特点[D];郑州大学;2011年
2 贾晓菲;彩色多普勒超声与乳腺癌病理及免疫组化指标的相关性研究[D];内蒙古大学;2015年
3 靳文;乳腺癌全基因组DNA甲基化修饰的研究[D];内蒙古大学;2015年
4 吴坤琳;TLR4/MyD88信号通路对乳腺癌侵袭性影响的实验研究[D];福建医科大学;2015年
5 葛广哲;树,
本文编号:2182979
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2182979.html