当前位置:主页 > 医学论文 > 肿瘤论文 >

直肠癌放射治疗相关的基因表达谱研究及MMP1基因在直肠癌细胞中的功能分析

发布时间:2018-09-02 05:29
【摘要】:研究背景:结直肠癌,又称大肠癌,是世界上第三大常见的恶性肿瘤。在我国,结直肠癌的发病率和死亡率一直呈上升趋势。直肠癌是大肠癌中最常见的一类肿瘤,约占60%左右。恶性肿瘤的一个最主要生物学特征就是转移,就是癌细胞从原发病灶迁移到其它部位形成转移灶,并维持复发肿瘤的生长。肿瘤一旦发生转移,其预后将极差。大多数癌症患者并非死于原发性癌而是死于转移性癌。因此,如何预防直肠癌转移是直肠癌治疗成败的关键。尽管外科手术一直以来都是治疗直肠癌的主要手段,但术后复发率高。目前,术前放疗已经成为Ⅱ/Ⅲ期直肠癌的标准疗法。放射治疗可以最大限度地将放射线的剂量集中照射到病灶内,杀灭肿瘤细胞,同时使周围的正常组织和关键器官免受或尽可能少受不必要的照射。术前放疗可以使肿瘤降期、降体积,甚至达到病理学上的完全消失,从而提高手术的局部根治率,还可以减少术中肿瘤种植机会,减少术后肿瘤的复发率,进而提高患者的长期生存率。但是术前放疗使直肠癌细胞发生了哪些分子变化尚不清楚。基因芯片技术是一种高通量、快速、全基因组分析技术,是研究基因功能强有力的工具之一,现在已普遍应用于医学研究的各个领域。基因表达谱是一种生物体或一种细胞对环境、遗传或者生化信号发生反应时,基因表达被激活或抑制数倍甚至数千倍,形成的特征性的基因表达图谱。表达谱基因芯片可用来检测基因的表达水平,通过比较不同条件下基因表达的差异情况,可分析疾病形成的基因水平原理、研究基因功能以及与疾病相关的通路,具有准确和简便两大优点。基因芯片的数据分析通常都需要一定的流程处理,也就是生物信息学分析。生物信息学是一门整合了统计学、信息学和计算机学等多种技术的交叉学科。该技术利用现有的分析工具和公共数据库,先对生物芯片的海量数据进行筛选,再采用序列比对、统计分析、生物聚类、功能或通路分析、可视化作图等方式,挖掘关键生物分子及其潜在机制,从而在分子水平上对疾病进行分析,丰富人们对疾病发生、治疗和预后等方面的认识。随着各种模式生物基因组测序工作的完成,生物信息学已经进入了功能基因组学时代。功能基因组学利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。目前,利用基因表达谱芯片来分析术前放疗对直肠癌分子学方面的影响还很少。研究目的和意义:(1)通过放疗前后直肠癌基因表达谱数据的分析,筛选放疗后直肠癌中的差异表达基因(DEG),并分析它们参与的功能和通路以及相互作用关系,预测调控这些DEG的microRNA和转录因子(TF),构建基因调控网络,找出放疗后直肠癌中发生显著变化的基因和关键功能通路,从分子层面揭示术前放疗治疗直肠癌的分子机制。(2)验证上述预测结果的准确性,并检测在相关基因沉默前和沉默后,直肠癌细胞增殖能力和转移能力的变化,以及不同X射线放射剂量对直肠癌细胞增殖能力和转移能力的影响,为临床放射治疗直肠癌提供实验依据。研究方法:(1)从GEO公共数据库里下载直肠癌放疗前后的mRNA表达谱数据,利用Bioconductor中的limma软件包对该数据集中所有样本进行差异表达分析,筛选出放疗后直肠癌细胞中的DEG(差异倍数大于1,并且p值小于0.05),并利用DAVID在线软件对这些DEG进行GO (Gene Ontology)富集分析和KEGG (Kyoto Encyclopedia of Genes and Genomes)通路富集分析(p值小于0.05);利用STRING在线数据库分析DEG对应的蛋白质相互作用关系,并用Cytoscape作图软件构建蛋白互作网络;利用UCSC数据库找出DEG中的TF,确定它们调控的差异表达基因,然后利用Cytoscape作图软件来构建它们的调控网络;最后利用多个miRNA数据库找出DEG与miRNA的调控关系,利用Cytoscape作图软件来构建它们的调控网络。(2)选取放疗后直肠癌细胞中差异表达倍数较大,并且与细胞增殖和转移功能相关的基因作为实验验证的对象,选用高转移性、恶性程度高的结直肠癌细胞系SW620为研究材料,利用MTT法和Transwell法检测不同X射线放射剂量对SW620细胞的增殖能力和转移能力的影响,用RT-PCR实验验证不同剂量的X射线辐照对SW620细胞相关基因表达的影响。采用siRNA法沉默相关基因,并用RT-PCR和western blot检测沉默效果。同样地,利用MTT法和Transwell法检测相关基因沉默后SW620细胞的增殖能力和转移能力。研究结果:(1)通过基因表达谱分析,共筛选出606个在放疗后直肠癌中差异表达的基因(表达差异1倍以上,并且p值小于0.05),其中上调基因271个,下调基因335个,其中MMP1的差异表达倍数最大,且p值最小。(2)GO功能富集分析结果显示,表达上调的差异基因主要显著富集在铁转运、对无机物和金属离子的应答等功能上,如SLC6A3、SLC30A4、RYR2和NEDD4L等。表达下调的差异基因主要和细胞信号传递、细胞增殖以及胶原代谢有关,其中SLC6A4和PDX1等参与了细胞间的信号转导功能,PTGS2和CDH5等基因参与了细胞的增殖调控,而MMP10、COL1A1、MMP3和MMP1主要和胶原蛋白的代谢过程有关。(3) KEGG通路富集分析结果显示,表达上调的差异基因主要显著富集在甾类激素的生物合成、钙信号通路、雄性激素和雌性激素的新陈代谢、刺激神经组织的配体和受体相互作用以及年轻人的成年型糖尿病这5条通路上,其中HSD3B2、UGT2A3、SULT1E1和UGT2B15这4个基因参与了甾类激素的生物合成通路以及雄性激素和雌性激素的新陈代谢通路,CYSLTR2、CHRM1和HTR6这3个基因主要参与了钙信号和刺激神经组织的配体和受体相互作用这两条通路。表达下调的差异基因显著富集在细胞外基质与受体的相互作用以及补体和凝血级联这两条通路上,其中COL4A2、COL4A1和COL6A3等7个编码胶原蛋白的基因参与细胞外基质与受体的相互作用这条通路上,SERPINE1、SERPIND1、F7、PLAU和F2R这5个基因主要参与补体和凝血级联通路。(4)DEG的蛋白互作网络分析结果显示,该网络共包含241个蛋白的410个相互作用关系对,连接度大于等于10的节点共有20个。其中COL1A2和COL1A1的连接度都是18,MMP1的连接度是11。(5)通过UCSC数据库分析,共找出5个是TF的差异表达基因,包含PAX6、 PLAU、FOXL1、NKX2-2和FOSL1。在DEG与TF的调控网络中,共有77个调控关系对,其中,PLAU除了调控MMP1、COL1A1等DEG,还调控NKX2-2和PAX6这两个转录因子。(6)通过7个miRNA数据库的综合分析,共筛选出177对miRNA和差异基因的调控关系,包含145个miRNA和40个差异表达基因,如hsa-miR-29c调控COL1A1、COL1A2、COL4A1和COL4A2这4个基因,MMP1被hsa-miR-222调控,MMP3被hsa-miR-204调控。(7)选取MMP1进行实验验证。MMP1沉默前,通过RT-PCR检测发现,SW620细胞中MMP1的1mRNA水平在0.1 GY、0.5 GY、1 GY、3GY口6 GY这5种辐射剂量下,相对于空白对照组(0 GY)都是降低的,并且辐射剂量在0.5 GY内,MMP1的表达量随着辐射剂量的增加大幅度降低。(8)通过MTT实验和Transwell实验发现,MMP1沉默前,SW620细胞的增殖能力和转移能力明显高于沉默后的(p值小于0.5),并且在辐射剂量6 GY内,SW620细胞的增殖能力和转移能力随着辐射剂量的增加逐渐下降。结论:(1)放射治疗使直肠癌中一些参与金属离子应答的基因(如SLC6A3、 SLC30A4、RYR2和NEDD4L)、参与钙离子信号通路与刺激神经组织的配体和受体相互作用通路的基因(如CYSLTR2和CHRM1)、与细胞增殖调控和补体凝血级联有关的基因(如PLAU、FOSL1和SERPINE1)、参与胶原代谢的基因(如MMP1和MMP3)以及一些参与细胞外基质与受体的相互作用通路的基因(如COL1A2、COL1A1和COL4A1等)发生了明显的表达量变化,这些基因对放疗产生了显著的应答反应。(2)对差异表达基因具有调控作用的一些miRNAs(如hsa-miR-29c、 hsa-miR-224、hsa-miR-204和hsa-miR-222),以及一些转录因子(如PLAU和FOSL1等),可能在直肠癌的放疗过程中具有重要的调控作用。(3)不同剂量的X射线辐射能使SW620细胞中的MMP1下调表达,并且辐射剂量在0.5 GY内,MMP1的表达量随着辐射剂量的增加大幅度降低。(4)MMP1对SW620细胞的增殖和转移具有关键的促进作用。本研究有助于揭示术前放疗治疗直肠癌的分子机制,并首次验证了不同放射剂量对直肠癌细胞中MMP1表达水平的影响,实验证明了MMP1在直肠癌细胞的增殖和转移过程中发挥的重要作用。这些结果为直肠癌的临床放射治疗敏感性检测提供了很好的理论和实验依据。
[Abstract]:Background: Colorectal cancer, also known as colorectal cancer, is the third most common malignant tumor in the world. In China, the incidence and mortality of colorectal cancer has been on the rise. Rectal cancer is the most common type of colorectal cancer, accounting for about 60%. Once metastasis occurs, the prognosis will be extremely poor. Most cancer patients die not from primary cancer but metastatic cancer. Therefore, how to prevent metastasis of rectal cancer is the key to the success or failure of rectal cancer treatment. Currently, preoperative radiotherapy has become the standard therapy for stage II/III rectal cancer. Radiotherapy can maximize the dose of radiation to the focus, kill tumor cells, and protect the surrounding normal tissues and key organs from or from unnecessary radiation. Preoperative radiation therapy can reduce the tumor stage, volume, and even completely disappear pathologically, thus increasing the local radical rate of surgery, reducing the chance of intraoperative tumor implantation, reducing the recurrence rate of postoperative tumor, and thus improving the long-term survival rate of patients. However, what molecular changes have taken place in rectal cancer cells after preoperative radiation therapy? Gene chip technology is a high-throughput, rapid, genome-wide analysis technology, is one of the powerful tools for studying gene function, and is now widely used in various fields of medical research. Gene microarray can be used to detect the level of gene expression. By comparing the differences of gene expression under different conditions, the principle of gene level in disease formation can be analyzed, and the function of gene and the pathway related to disease can be studied. Bioinformatics is an interdisciplinary subject that integrates many technologies such as statistics, informatics and computer science. The technology uses existing analytical tools and public databases to perform mass data on biochips first. Screening, sequence alignment, statistical analysis, biological clustering, functional or pathway analysis, visual mapping and other methods are used to explore key biological molecules and their underlying mechanisms, so as to analyze diseases at the molecular level and enrich people's understanding of disease occurrence, treatment and prognosis. With the completion of bioinformatics, functional genomics has entered the era of functional genomics. Using the information and products provided by structural genomics, functional genomics has developed and applied new experimental methods to comprehensively analyze the functions of genes at the genome or system level, thus making biological research shift from single gene or protein to multiple ones. The purpose and significance of this study are: (1) Screening differentially expressed genes (DEG) in rectal cancer before and after radiotherapy by analyzing the gene expression profiles of rectal cancer before and after radiotherapy. They participate in the function and pathway and interaction, predict the microRNA and transcription factor (TF) that regulate these DEGs, construct gene regulatory network, identify significant changes in the gene and key functional pathways in rectal cancer after radiotherapy, reveal the molecular mechanism of preoperative radiotherapy for rectal cancer. (2) Verify the predicted results. Methods: (1) To download the data from GEO public database, and to analyze the effects of different X-ray doses on the proliferation and metastasis of rectal cancer cells. Using limma software package in Bioconductor, the differential expression profiles of all samples in the data set were analyzed before and after radiotherapy for colorectal cancer. The DEGs in the rectal cancer cells after radiotherapy were screened out (the difference multiple was greater than 1, and the p value was less than 0.05). The DAVID online software was used to enrich the DEGs by GO (Gene Ontology) and KEG (KEG). G (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis (p value less than 0.05); STRING online database was used to analyze the protein-protein interaction relationship corresponding to DEG, and Cytoscape mapping software was used to construct protein-protein interaction network; UCSC database was used to identify TF in DEG, determine the differentially expressed genes regulated by them, and Cyt was used to analyze the protein-protein interaction relationship. Osape mapping software was used to construct their regulatory networks. Finally, multiple microRNA databases were used to find the regulatory relationship between DEG and microRNAs, and Cytoscape mapping software was used to construct their regulatory networks. (2) Genes related to cell proliferation and metastasis were selected as the experiment. The proliferation and metastasis of colorectal cancer SW620 cells were examined by MTT and Transwell methods. The effects of different doses of X-ray irradiation on the expression of related genes in SW620 cells were examined by RT-PCR. Similarly, MTT and Transwell methods were used to detect the proliferation and metastasis of SW620 cells. Results: (1) A total of 606 differentially expressed genes (tables) were screened out by gene expression profile analysis. Among them, 271 genes were up-regulated and 335 genes were down-regulated. MMP1 had the largest differential expression multiple and the smallest P value. (2) GO enrichment analysis showed that the up-regulated genes were mainly concentrated in iron transport, inorganic substances and metal ions, such as SLC6A3, SLC30A4, and so on. The down-regulated genes of RYR2 and NEDD4L are mainly related to cell signal transduction, cell proliferation and collagen metabolism. SLC6A4 and PDX1 are involved in cell-to-cell signal transduction, PTGS2 and CDH5 are involved in cell proliferation regulation, while MMP10, COL1A1, MMP3 and MMP1 are mainly related to collagen metabolism. The results of GG pathway enrichment analysis showed that the differentially expressed genes were significantly enriched in the biosynthesis of steroids, calcium signaling pathway, metabolism of androgens and estrogens, interaction of ligands and receptors in nerve tissue, and adult diabetes mellitus in young adults, including HSD3B2, UGT2A3, SULT1E1 and SULT1E1. UGT2B15 genes are involved in the biosynthetic pathways of steroids and the metabolic pathways of androgens and estrogens. CYSLTR2, CHRM1 and HTR6 genes are involved in calcium signaling and ligand-receptor interactions that stimulate nerve tissue. The down-regulated genes are significantly enriched in extracellular matrix. Seven genes encoding collagen, COL4A2, COL4A1 and COL6A3, are involved in the interaction between ECM and receptor. SERPINE1, SERPIND1, F7, PLAU and F2R are involved in the complement and coagulation cascade pathways. The results of network analysis showed that the network contained 410 interaction pairs of 241 proteins and 20 nodes with connectivity greater than or equal to 10. The connectivity of COL1A2 and COL1A 1 was 18 and that of MMP1 was 11. (5) Five differentially expressed TF genes including PAX6, PLAU, FOXL1, NKX2-2 and FOSL were identified by UCSC database analysis. 1. In the regulatory network of DEG and TF, there are 77 regulatory relationship pairs. PLAU regulates NKX2-2 and PAX6 in addition to MMP1 and COL1A1. MMP1 was regulated by hsa-microarray-222, and MMP3 was regulated by hsa-microarray-204. (7) MMP1 was selected for experimental verification. MMP1 mRNA levels in SW620 cells were detected by RT-PCR before silencing. MMP1 mRNA levels in SW620 cells were decreased at 0.1 GY, 0.5 GY, 1 GY, and 6 GY of 3GY compared with the blank control group (0 GY). (8) MTT and Transwell experiments showed that the proliferation and metastasis abilities of SW620 cells before MMP1 silencing were significantly higher than those after MMP1 silencing (p < 0.5), and the proliferation and metastasis abilities of SW620 cells within 6 GY of radiation dose were significantly higher than those after MMP1 silencing (p < 0.5). CONCLUSIONS: (1) Radiotherapy causes some genes (such as SLC6A3, SLC30A4, RYR2 and NEDDD4L) involved in metal ion response in rectal cancer, genes (such as CYSLTR2 and CHRM1) involved in calcium signaling pathways and ligand-receptor interaction pathways (such as CYSLTR2 and CHRM1) that stimulate nerve tissue, to regulate and complement cell proliferation. Genes related to coagulation cascade (such as PLAU, FOSL1 and SERPINE1), genes involved in collagen metabolism (such as MMP1 and MMMP3), and some genes involved in extracellular matrix-receptor interaction pathways (such as COL1A2, COL1A1 and COL4A1) have undergone significant changes in expression, and these genes respond significantly to radiotherapy. Some microRNAs (such as hsa-microRNAs-29c, hsa-microRNAs-224, hsa-microRNAs-204, hsa-microRNAs-222) and some transcription factors (such as PLAU and FOSL1) may play important roles in the regulation of rectal cancer during radiotherapy. (3) Different doses of X-ray radiation can down-regulate the expression of MMP1 in SW620 cells, and radiation agents can down-regulate the expression of MMP1. The expression of MMP1 decreased significantly with the increase of radiation dose within 0.5 GY. (4) MMP1 plays a key role in promoting proliferation and metastasis of SW620 cells. These results provide a good theoretical and experimental basis for the clinical radiosensitivity detection of rectal cancer.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R735.37

【共引文献】

相关期刊论文 前10条

1 张冠南;王保华;肖毅;邱辉忠;;直肠癌新辅助放化疗敏感性预测进展[J];癌症进展;2009年03期

2 钱立庭;影响直肠癌预后的分子标志物[J];国外医学(肿瘤学分册);2002年05期

3 赵波;钟华戈;吴卫;唐卫中;;结直肠癌危险因素的流行病学研究进展[J];结直肠肛门外科;2013年03期

4 Bojan Stanimirov;Karmen Stankov;Momir Mikov;;Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases[J];Hepatobiliary & Pancreatic Diseases International;2015年01期

5 康旭,冼沛中,曹军,徐飞鹏;大肠癌中PCNA、c-erbB2、bc1-2和P53蛋白表达与临床病理关系[J];海南医学;2004年09期

6 房学东;;结直肠癌的诊治进展[J];吉林医学;2006年05期

7 白文坤;张蔚;陈旖旎;王玉;胡兵;;低频低能量超声联合微泡抑制人前列腺癌细胞PC-3转移的研究[J];临床超声医学杂志;2015年02期

8 张燕华;艾毅钦;;分子标志物在直肠癌放化疗敏感性研究中的应用进展[J];云南医药;2012年03期

9 魏怡,张可领,孙苏平,金冶宁;直肠癌术前不同方法照射对肿瘤切除率的影响[J];中华放射医学与防护杂志;2001年04期

10 孙明辉;肖胜英;刘爱群;葛莲英;;人结肠癌放射抗拒性细胞株的建立[J];中国癌症防治杂志;2013年01期

相关博士学位论文 前6条

1 姜涛;苯乙酸及二甲基甲酰胺对大肠癌诱导分化作用及机理的研究[D];吉林大学;2004年

2 任辉;同源盒基因的表达调控在结直肠癌细胞分化诱导过程中的作用机理研究[D];吉林大学;2005年

3 张广;RNA编辑酶在结直肠癌细胞诱导分化中作用的实验研究[D];吉林大学;2008年

4 陶国全;TIMP1在结直肠癌中的作用及其调控机制研究[D];南方医科大学;2013年

5 宗爱珍;硫酸化乌贼墨多糖抗肿瘤生长和转移的活性及机制研究[D];山东大学;2013年

6 赵琳;四环素衍生物CMT-3抗癌作用及其机制的研究[D];苏州大学;2014年

相关硕士学位论文 前8条

1 李进军;血管内皮生长因子和基质金属蛋白酶-7在直肠癌中的表达及临床意义[D];河北医科大学;2002年

2 倪升发;直肠癌放疗前后K-ras基因突变和MGMT基因甲基化检测及临床分析[D];苏州大学;2006年

3 孙明辉;人结肠癌放射抗性细胞的建立与CCND1、CDK4的表达研究[D];广西医科大学;2013年

4 赵波;结直肠癌危险因素及临床流行病学特征的调查与分析[D];广西医科大学;2013年

5 唐孝准;TNMⅡ、Ⅲ期结直肠癌腹腔镜根治术与开放手术术后复发及转移率的临床对比分析[D];广西医科大学;2014年

6 徐秋月;宣威肺癌全基因组拷贝数变异研究和相关基因的筛选[D];昆明医科大学;2014年

7 徐伟;共信号分子B7-H3与结直肠癌侵袭相关性的初步研究[D];苏州大学;2014年

8 卞婷婷;恩度联合TP方案对人MCF-7乳腺癌裸鼠移植瘤VEGF、MMP-2表达的影响[D];辽宁医学院;2014年



本文编号:2218386

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/zlx/2218386.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户92ea7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com