循环肿瘤细胞分离方法的建立和临床应用的探索
[Abstract]:Objective To enrich circulating tumor cells (CTC) with Opti Prep density gradient centrifugation combined with immunomagnetic beads, and to establish a simple and efficient method for enriching and identifying peripheral blood CTC in cancer patients by combining multi-color immunofluorescence labeling and fluorescence in situ hybridization technique. The effect was used in the detection of CTC counts in peripheral blood of patients with clinical tumors. On the basis of this, a single cell acquisition technology platform was established to study the single cell group study of specific CTC cells or CTC cells. Microdissection and microscopic aspiration after the CTC were observed to obtain single cells for molecular identification, which would facilitate molecular identification of CTCs, develop new therapeutic targets, and produce a more effective treatment regimen for cancer patients. Method 1. The cell components of peripheral blood were obtained by gradient centrifugation of Opti Prep solution with different densities and different density cells. Multiple tumor cells, such as QGY-7701, were selected to be mixed with peripheral blood to simulate the state of circulating tumor cells in vivo. The efficiency, recovery and activity of Opti Prep liquid and Ficoll liquid enriched tumor cells were compared. The optimal circulating tumor cell enrichment system was established by density gradient centrifugation combined with immunomagnetic beads. Five tumor cell lines were selected: liver cancer cell (QGY-7701, Huh-7, NCI-7721), ovarian cancer cell HO-8910, lung cancer cell A549, and cell immunofluorescent staining of CD45 and CK18 antibodies respectively. CIK cells were used as control. FISH markers CIK cell chromosome number. the tumor cells are mixed with normal human peripheral blood to simulate peripheral blood circulating tumor cells to enrich, the immunofluorescence technique is combined with FISH detection, and the tumor cells are accurately identified. Combined enrichment and detection methods accurately detect peripheral blood circulating tumor cells in cancer patients and conduct methodological verification evaluation. Based on the patient's CTC test number and clinical outcome data, we established the effect of CTC detection on the prognosis of patients with tumor. Single target cell and pure target cell population were extracted by microdissection and microdissection. The single cell was captured by Carl Zeiss PALM Combi System and Cell Ector Plus, and the gene expression of tumor cells was detected by RT-PCR. Results 1. Opti Prep liquid could effectively separate monocytes and enrich QGY-7701 tumor cells in white membrane. The concentration of tumor cells in Oti Prep was higher than that of Ficoll (P0.05). In single cell operation, 50 or so tumor cells were injected into the blood-simulated circulating tumor cells, and the recovery rates of Opti Prep and Ficoll were more consistent. Immunofluorescence showed that only CIK cells observed CD45 red fluorescence, while CK18 was only CIK cells without green fluorescence. The results of fluorescence in situ hybridization showed that the cell chromosome could be marked by fluorescence in situ hybridization. By examining the methods of enriching and detecting circulating tumor cells in the peripheral blood of 33 patients enrolled, the existence of circulating tumor cells was found, which indicated that the established method could effectively detect the CTC in the blood of cancer patients. The results showed that the number of CTC corresponded to shorter survival and poor prognosis. According to the experimental requirements, the study relates to two single cell acquisition technologies capable of identifying fluorescent labels, and the results show that the single cell can be rapidly and accurately obtained, the problem of cell heterogeneity is solved, pure target cells are obtained, and the next step molecular identification of a small amount of CTCs is provided with the opportunity, and a good application prospect is displayed. Conclusion This study successfully established Opti Prep density gradient centrifugation combined with immunomagnetic beads to enrich CTC, and combined with fluorescent in situ hybridization technique to detect CTC, and has the effect of CTC identification in peripheral blood of clinical tumor patients. in addition, attempt to acquire rare circulating tumor cells by single cell capture novel technology, identify and further gene sequencing research search directions for subsequent single cell target gene expression identification and further gene sequencing, indicate that prognosis and prediction information of cancer refer to a bright direction, Provide reference for the reasonable choice of individualized instruction therapy and medication.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R730
【共引文献】
相关期刊论文 前10条
1 邱必军;张会禄;李萍;夏强;翟博;;射频消融联合激活的树突状细胞疫苗对新西兰大白兔肝脏原位种植VX2肿瘤治疗的实验研究[J];肝胆外科杂志;2013年04期
2 张泽波;江应安;;核苷类似物抗病毒治疗慢性乙型肝炎患者肝癌发生的因素分析[J];实用肝脏病杂志;2013年05期
3 张毅;张君薇;谢淑丽;王广义;;RNAi沉默STAT3基因联合mTOR抑制剂rapamycin诱导BEL-7402肝癌细胞凋亡[J];吉林大学学报(医学版);2013年05期
4 易永祥;赵伟;韩建波;宋艳;丁滢;周镇先;;经肝内注射肿瘤细胞建立小鼠肝癌实验模型的效果观察[J];肝胆胰外科杂志;2013年05期
5 宋春丽;任吉华;冉龙宽;李宛蔚;陈娟;;SIRT2沉默对肝癌细胞的迁移和侵袭能力的影响[J];第三军医大学学报;2013年24期
6 吴冬梅;刘繁荣;罗佳;章敬成;;CCL5、糖尿病与肝癌之间相互关系的研究进展[J];广东医学;2013年23期
7 张薇;张龙江;黄伟;;动态对比增强MRI的基本原理及其在肝脏病变的应用[J];国际医学放射学杂志;2014年01期
8 Anna-Maria Tanase;Traian Dumitrascu;Simona Dima;Razvan Grigorie;Agnes Marchio;Pascal Pineau;Irinel Popescu;;Influence of hepatitis viruses on clinico-pathological profiles and long-term outcome in patients undergoing surgery for hepatocellular carcinoma[J];Hepatobiliary & Pancreatic Diseases International;2014年02期
9 周陈杰;宫绪萌;蔡理全;汪艳;高毅;;改良的从肝硬化到产生肝癌的大鼠模型[J];南方医科大学学报;2014年04期
10 赵世印;雷旭;李芳;李金科;谭华炳;;HBV感染抗病毒治疗中发生肝细胞癌24例临床分析[J];中国肝脏病杂志(电子版);2014年01期
相关会议论文 前2条
1 李娜;何荣祥;张正涛;曹一平;张玮莹;;循环肿瘤细胞俘获及微流控芯片多通道检测[A];中国化学会第29届学术年会摘要集——第02分会:分离分析及微、纳流控新方法[C];2014年
2 刘新会;陈逢生;李爱民;罗荣城;;糖尿病与肝细胞癌相关性的研究进展[A];中国肿瘤内科进展 中国肿瘤医师教育(2014)[C];2014年
相关博士学位论文 前10条
1 杨少波;人胃腺癌相关基因谱研究[D];中国人民解放军军医进修学院;2002年
2 孔丽;RbAp48在HPV致宫颈癌中的功能研究[D];山东大学;2007年
3 李元元;乙肝相关性肝癌的危险因素及其与淋巴细胞亚群关系的研究[D];中国人民解放军军医进修学院;2013年
4 刘志明;广西三纬度地区人群AFB_1暴露及其与DNA氧化损伤和修复关系的研究[D];广西医科大学;2013年
5 邓欢;AEG-1促进肝癌细胞失巢凋亡抵抗的机制及自噬在其中作用的研究[D];华中科技大学;2013年
6 丁松明;肿瘤微环境不同成分在肝癌侵袭转移中的作用研究[D];浙江大学;2013年
7 杨芳;PcG蛋白EZH2、Bmi-1及MiR-203协同调控在肝癌肝移植术后肿瘤复发和转移中的作用[D];福建医科大学;2013年
8 毕茜;miR-125a通过靶向MMP11和VEGF抑制肝癌细胞的增殖和转移[D];第四军医大学;2013年
9 刘侠;肝细胞癌N-糖链的结构改变及其机制研究[D];哈尔滨工业大学;2013年
10 刘超;BEZ235体外抑制肝癌HepG2细胞的分子机制以及Six1蛋白过表达与肝癌生物学特点的关系[D];延边大学;2013年
相关硕士学位论文 前10条
1 王爽;鼻咽低分化鳞状细胞癌分子分类的初步研究[D];第一军医大学;2004年
2 张薇;子宫颈癌癌灶及癌灶旁鳞状上皮内病变HPV亚型的分布[D];河北医科大学;2008年
3 马德亮;乳腺癌患者循环肿瘤细胞的检测及其临床应用[D];苏州大学;2010年
4 胡鹏;微波消融高龄肝癌患者的临床研究及射频与手术治疗小肝癌疗效的meta分析[D];苏州大学;2013年
5 张健;肝动脉化疗栓塞联合三维适形放射治疗原发性肝癌伴门静脉癌栓的生存分析[D];苏州大学;2013年
6 贾慧丽;PIWIL2基因在肝癌组织中mRNA及蛋白的表达[D];郑州大学;2013年
7 王姗;复制选择性溶肿瘤腺病毒Adll-Tel-GFP在肺癌CTCs检测中的应用[D];郑州大学;2013年
8 王冬;核因子-κB在去甲斑蝥素诱导肝癌细胞SMMC-7721凋亡中的作用[D];河北医科大学;2013年
9 董栋;MDM2基因组成型启动子40-bp插入/缺失多态性与肝细胞肝癌易感性的关联研究[D];苏州大学;2013年
10 孙藜玮;EGCG对小鼠H_(22)肿瘤生长及VEGF、PCNA表达的影响[D];青岛大学;2013年
,本文编号:2279835
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2279835.html