整合多组学数据的癌症生物标志物的识别与研究
[Abstract]:In the field of cancer research and medicine, biomarkers can diagnose the condition of cancer patients in the early stage, provide timely treatment methods, and can also predict the condition of cancer, which has a very high guiding value for the treatment of cancer. Many studies have reported that genes can be used as candidate biomarkers for the diagnosis, prognosis and efficacy of diseases or cancer. With the development of high-pass sequencing technology, the research of cancer biomarkers has also begun to develop from single group data to multi-group data, but the integration of multi-group data is still in the stage of simple integration, and the internal relationship of multi-group data can not be found. We integrate gene expression data and DNA methylation data to study and analyze cancer biomarkers. The research contents of this paper are as follows: 1. The traditional feature selection methods often consider the high classification performance of feature selection results in high-dimensional small sample data, but ignore the stability of feature selection results. In order to select the characteristics of gene expression data, this paper proposes to preserve the important genes related to cancer recognized by researchers, and to obtain a stable method of gene feature combination. 2, because 450K methylated chip covers only 2% of all methylated sites, simple fusion may lead to biased results. In this paper, a method of fusion between extended 450K methylated chip data and gene expression data is proposed for the first time, and cancer biomarkers are analyzed from many levels, and as much as possible, more information is retained when fusion of multigroup data, and stable and reliable potential cancer biomarkers with popularizing value are obtained. The classification accuracy and reliability of this method are higher than those of the traditional method. In this paper, a variety of cancer specific potential cancer biomarkers and potential cancer biomarkers common to a variety of cancers are analyzed to provide guidance and help for medical research and clinical treatment. 3. A classification model based on fuzzy rules is constructed to verify the classification effect of the potential cancer biomarkers selected in this paper for normal and cancer samples. By cross-verifying and comparing the traditional method of gene expression and the simple fusion method of DNA methylation data, it is found that the method in this paper is superior to the traditional method, and the prediction results of independent samples are also better than the traditional method. Finally, based on the potential cancer biomarkers found, a classification rule with higher robustness and easy to understand is obtained.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R730.4
【相似文献】
相关期刊论文 前10条
1 方福德;生物标志物(biological marker)[J];中华预防医学杂志;2001年01期
2 王三虎,高星;铅的生物标志物研究[J];中国职业医学;2002年01期
3 郑玉新,庄志雄;基因组时代生物标志物研究的机遇与挑战[J];中华预防医学杂志;2005年03期
4 黄忠;;生物标志物的蛋白组学研究-高通量质谱分析[J];泸州医学院学报;2011年05期
5 叶细标,倪为民,傅华;分子生物标志物及其应用[J];中国工业医学杂志;2002年01期
6 邵华;生物标志物的研究进展[J];职业与健康;2002年09期
7 胡训军;肖萍;王文静;陈良;卢伟;;三氯乙烯生物标志物的研究进展[J];环境与职业医学;2006年01期
8 肖忠海;王林;;癌症生物标志物[J];国外医学.药学分册;2006年06期
9 贾光;沈惠麒;;以生物标志物研究为切入点推动生物监测的发展[J];中华预防医学杂志;2006年06期
10 ;《生物监测与生物标志物理论基础及应用》新书预告[J];中华劳动卫生职业病杂志;2006年12期
相关会议论文 前10条
1 陈建平;邓春萍;宋孚庆;张大江;;应用生物标志物定量计算混合原油油源的数学模型[A];第十届全国有机地球化学学术会议论文摘要汇编[C];2005年
2 王晓蓉;;分子生物标志物在水环境有机污染的早期预警研究进展[A];有机污染环境化学前沿与环境可持续发展战略论文集[C];2006年
3 申秀萍;贾长虹;;十二五“重大新药创制”毒性生物标志物与人源化动物模型关键技术课题简介[A];2013年(第三届)中国药物毒理学年会暨药物非临床安全性评价研究论坛论文摘要[C];2013年
4 申秀萍;贾长虹;;十二五“重大新药创制”毒性生物标志物与人源化动物模型关键技术课题简介[A];中国药理学与毒理学杂志(2013年6月第27卷第3期)[C];2013年
5 谢鑫友;;新技术在生物标志物筛选中的应用(英文)[A];2007年浙江省医学检验学学术年会论文汇编[C];2007年
6 马t,
本文编号:2502961
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2502961.html