长链非编码RNA UCA1在肝癌中的表达、功能及其调控机制研究
[Abstract]:[BACKGROUND] HEPATOCELLULAR CARCINOMA (HCC) is one of the most common malignant tumors in China. The incidence of HCC is the fourth of the major malignant tumors, and has been increasing year by year in recent years, because of its high degree of malignancy, rapid progress and poor prognosis. The mortality rate has been the second in the major malignancies. It is necessary to actively explore the gene related to HCC, and provide a new thought and a new target for the pathogenesis of HCC and the clinical diagnosis and treatment. Long-chain non-coding RNAs (IncRNAs) is a kind of RNA molecule which is closely related to tumorigenesis and development in recent years. Recent studies have shown that lncRNAs can be used as competitive endogenous RNA (cRNA) to compete with miRNAs through its microRNA response elements (MREs) to inhibit the function and activity of miRNAs, so as to regulate the expression of miRNAs target gene mRNAs at the post-transcriptional level. UCA1 (Urodynamic carcinoma associated 1) is a new kind of IncRNA molecule, which is first found in bladder cancer. It is reported that it is highly expressed in bladder cancer, colorectal cancer, breast cancer and other tumors and is closely related to the malignant progression of the tumor. However, the expression pattern, function and potential mechanism of UCA1 in HCC have not been reported in the literature. [Objective] To study the expression pattern and clinical significance of UCA1 in HCC, and to analyze the effect of RNA interference on proliferation, clone formation, cell cycle, invasion and migration of HCC cells and the growth of transplanted tumor in nude mice. The role of UCA1--miRNA--patway control network in the development of HCC was discussed. [Methods] (1)1 ncRNA chip was used to screen the IncRNA molecule in the tissue of HCC. (2) Real-time fluorescence quantitative PCR (qRT-PCR) was used to verify the screening UCAl; (3) Fisher's exact probability method, the Kaplan-Meier survival curve and the Cox regression model were used to analyze the relationship between the expression of UCA1 and the clinicopathological parameters and prognosis of HCC patients. (4) constructing a UCA short hairpin RNA interference vector, transfecting the HCC cell strain with high expression of UCA1, detecting the interference efficiency, (5) detecting cell proliferation by the CCK-8 method, detecting the cell cycle by flow cytometry, and detecting the cell clone formation by the plate method, The biological function of UCA1 in HCC was analyzed by Transwell's cell method, and the biological function of UCA1 in HCC was analyzed by transwell chamber method. (6) Bioinformatics was used to predict the miRNAs that could interact with UCA1 and the target genes of the corresponding miR-NA; (7) qRT-PCR and immunohistochemistry were used to analyze the UCA1 in the clinical HCC specimens. The correlation between the expression of the miRNA and the target gene; (8) the double-luciferase assay and the RNA Binding Protein Immunopreservation (RIP) test verify that the UCA1 and the miRNA act on the RNA-induced silencing complex (RISC); (9) analyzing whether the UCA1 can inhibit the biological function of the miRNA; (10) the double-luciferase test verifies the relation between the miRNA and the target gene; (11) qRT-PCR and Western blot analysis the influence of the UCA1 and the miRNA on the mRNA and the protein expression of the target gene; (12) Western blot was used to analyze the expression of signal pathway protein and its phosphorylated protein in the target gene. [Results] (1) The expression of UCA1 in the tissues of HCC was significantly higher than that in the adjacent tissues (P 0.01). (2) The TNM staging of UCA1 and HCC was closely related to the long-distance metastasis, and the survival time of the HCC patients with high expression of UCAl was significantly shortened in the survival curve, P 0.001; single factor and multi-factor regression analysis showed that UCA1 could be used to judge the poor prognosis of HCC patients. (3) Two cell lines (SMMC-7721 and HepG2 cells) with high expression of UCA1 were constructed, and the interference efficiency was siUCAl # 1:81% and 78% respectively; siUCAl # 2:54% and 47%; siUCAl # 1 + siUCAl # 2:66% and 60%, respectively. A follow-up UCA1 functional study was performed using the siUCA1 # 1 interference vector (i.e., siUCA1). (4) After the SMMC-7721 and HepG2 cells were transfected with siUCA1, the cell proliferation, the formation of the clone and the invasion and migration can be inhibited in vitro, and the cell cycle G0/ G1 arrest of HCC was induced. (5) Bioinformatics predicts that there are MREs that can be complementary to miR-216b, miR-665, miR-326, miR-212-5p, miR-338-3p, miR-567 and miR-136-3p in the UCA1 sequence; in the HCC cells transfected with siUCA1, only miR-216b expression is significantly increased (2-fold); while the expression of the remaining 6 miRNAs has no significant change or slight change (1.5 times). (6) The luciferase reporter vector of UCA1 was constructed, and the HCC cells were co-transfected with miR-216b. The two-luciferase assay confirmed that both of them could be combined by MRE. The RIP test further confirmed that the expression of UCA1 and miR-216b in RISC (7) r niR-216b was significantly lower than that in the adjacent tissues (P0.01). The expression of UCA1 and miR-216b in HCC was negatively correlated with the expression of miR-216b, r =-0.6224, P.0001. (8) miR-216b can inhibit the proliferation and clone formation, invasion and metastasis of HCC cells, the growth of transplanted tumor in nude mice and the induction of cell cycle G0/ G1 phase, and UCA1 can reverse the inhibitory effect of miR-216b on the growth and metastasis of HCC cells. (9) Bioinformatics predicts that the fibroblast growth factor receptor 1 (FGFR1) is one of the target genes of miR-216b. Double-luciferase assay confirmed that FGFR1 is a target gene of miR-216b, and both miR-216b or siUCA1 can downregulate the expression of FGFR1 mRNA and protein in the HCC cell; the overexpression of UCA1 can upregulate the expression of FGFR1 mRNA and protein; and when miR-216b is co-transfected with UCA1, the expression of FGFR1 mRNA and protein can be recovered. (10) In the specimens of HCC, the expression of FGFR1 protein and mRNA was positively correlated with the expression of UCA1, r = 0.7114 and 0.6116, P.0001; while the expression of FGFR1 and miR-216b was negatively correlated with the expression of miR-216b, r =-0.5040 and-0.7094, P.0001. (11) Western blot analysis showed that UCA1 was not a MAPK signal pathway through FGFR1-JNK and FGFR1-p38, but instead of the FGFR1-ERK1/2 signaling pathway, the malignant progression of HCC was promoted. [Conclusion] UCA1 is highly expressed in HCC and is related to TNM staging, metastasis and prognosis of patients. UCA1 can be used as an oncogene to promote the proliferation, invasion and migration of HCC cells and the formation of transplanted tumor in nude mice. The mechanism study found that UCA1 could be used as ceRNA to bind to miR-216b, which could reverse the inhibition of miR-216b on the growth and metastasis of HCC cells, and release the inhibition of miR-216b on the target gene FGFR1, and the expression of FGFR1 was increased, and the development of HCC was promoted by the ERK signal (UCA1-miR-216b-FGFR1-ERK patway). This study provides a new way for the exploration of the pathogenesis of HCC, and also provides a new development direction and a new target for the diagnosis and treatment of HCC.
【学位授予单位】:南京医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R735.7
【相似文献】
相关期刊论文 前10条
1 鲁慧英;Detection of hepatitis C virus RNA sequences in cholangiocarcinomas in Chinese and American patients[J];Chinese Medical Journal;2000年12期
2 ;Detection the HCV RNA by PCR-microplate hybridization method from clinical specimens[J];中国输血杂志;2001年S1期
3 付汉江,郑晓飞;类mRNA RNA研究进展[J];国外医学(分子生物学分册);2002年04期
4 Verheyden B ,徐其武;口服脊髓灰质炎疫苗核壳和RNA的稳定性[J];国外医学.预防.诊断.治疗用生物制品分册;2002年01期
5 CMBE译文组;探索小RNA的功能[J];现代临床医学生物工程学杂志;2004年03期
6 沈维干;RNA interference and its current application in mammals[J];Chinese Medical Journal;2004年07期
7 ;Potent and specific inhibition of SARS-CoV antigen expression by RNA interference[J];Chinese Medical Journal;2005年09期
8 孙娣;汪洋;张丽娟;闫玉清;;一种简捷提取植物总RNA的方法[J];黑龙江医药;2005年06期
9 熊慧华;于世英;胡广原;庄亮;;Effects of Survivin Expression Suppressed by Short Hairpin RNA on MCF-7 Cells[J];华中科技大学学报(医学英德文版);2006年03期
10 杨益超;;RNA干扰及其在医学中的应用[J];广西医学;2007年10期
相关会议论文 前10条
1 金由辛;;面向21世纪的RNA研究[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
2 ;第四届RNA全国研讨会大会报告日程安排[A];第四届全国RNA进展研讨会论文集[C];2005年
3 ;Function of Transfer RNA Modifications in Plant Development[A];植物分子生物学与现代农业——全国植物生物学研讨会论文摘要集[C];2010年
4 王峰;张秋平;陈金湘;;棉花总RNA的快速提取方法[A];中国棉花学会2011年年会论文汇编[C];2011年
5 关力;陈本iY;iJ云虹;郭培芝;魏重琴;邱苏吾;苗健;;关于动物}D~T中RNAn,定方法的研究[A];中国生理科学会学术会议论文摘要汇编(生物化学)[C];1964年
6 夏海滨;;小RNA在免疫学领域中的应用研究进展[A];中国免疫学会第五届全国代表大会暨学术会议论文摘要[C];2006年
7 ;The stability of hepatitis C virus RNA in various handling and storage conditions[A];中国输血协会第四届输血大会论文集[C];2006年
8 郭德银;;RNA干扰在病毒研究和控制中的应用[A];2006中国微生物学会第九次全国会员代表大会暨学术年会论文摘要集[C];2006年
9 甘仪梅;杨业华;王学奎;曹燕;杨特武;;棉花总RNA快速提取[A];中国棉花学会2007年年会论文汇编[C];2007年
10 ;Identification and characterization of novel interactive partner proteins for PCBP1 that is a RNA-binding protein[A];中国优生优育协会第四届全国学术论文报告会暨基因科学高峰论坛论文专辑[C];2008年
相关重要报纸文章 前10条
1 记者 冯卫东;研究人员发现可破坏肿瘤抑制基因的小RNA[N];科技日报;2009年
2 记者 储笑抒 通讯员 盛伟;人体微小RNA有望提前发出癌症预警[N];南京日报;2011年
3 泸州医学院副教授、科普作家 周志远;“大头儿子”与环状RNA[N];第一财经日报;2014年
4 麦迪信;小分子RNA可能有大作用[N];医药经济报;2003年
5 董映璧;美发现基因调控可回应“RNA世界”[N];科技日报;2006年
6 张忠霞;特制RNA轻推一下,就能“唤醒”基因[N];新华每日电讯;2007年
7 聂翠蓉;RNA:纵是配角也精彩[N];科技日报;2009年
8 冯卫东;RNA干扰机制首次在人体中获得证实[N];科技日报;2010年
9 冯卫东 王小龙;英在地球早期环境模拟条件下合成类RNA[N];科技日报;2009年
10 记者 常丽君;新技术让研究进入单细胞内RNA的世界[N];科技日报;2011年
相关博士学位论文 前10条
1 王赵玮;昆虫RNA病毒复制及昆虫抗病毒天然免疫机制研究[D];武汉大学;2014年
2 包纯;一类新非编码RNA的发现以及产生和功能的初探[D];华中师范大学;2015年
3 李语丽;基于MeRIP-seq的水稻RNA m6A甲基化修饰的研究[D];中国科学院北京基因组研究所;2015年
4 熊瑜琳;miR-122靶位基因STAT3调控长链非编码 RNA Lethe促进HCV复制的机制研究[D];第三军医大学;2015年
5 范春节;高通量测序鉴定毛竹小RNA及其功能分析[D];中国林业科学研究院;2012年
6 王加强;小鼠着床前胚胎特异ERV相关长非编码RNA的定向筛选及功能研究[D];东北农业大学;2015年
7 王业伟;非编码RNA SPIU的结构和功能研究和p19INK4D在APL发病中的作用[D];上海交通大学;2013年
8 邹艳芬;子痫前期中非编码RNA对滋养细胞功能的调控及机制探索[D];南京医科大学;2015年
9 朱乔;miR-10b在人肝细胞肝癌发生中的作用及其机制的初步探索[D];第四军医大学;2015年
10 蒋俊锋;长链非编码RNA BACE1-AS促进Aβ聚集及其调节BACE1和SERF1a的ceRNA机制研究[D];第二军医大学;2015年
相关硕士学位论文 前10条
1 陆聪儿;条纹斑竹鲨再生肝脏中差异RNA的研究[D];浙江理工大学;2015年
2 张晓辉;小鼠几种长链非编码RNA基因功能的初步研究[D];昆明理工大学;2015年
3 全弘扬;长链非编码RNA在细胞内质网应激反应中的相关作用及机制研究[D];北京协和医学院;2015年
4 胡亮;DDX19A识别PRRSV基因组RNA并激活NLRP3炎症小体[D];中国农业科学院;2015年
5 张帅兵;应用RNA干扰技术对旋毛虫Nudix水解酶基因功能的研究[D];郑州大学;2015年
6 郑芳芳;肺癌RNA-Seq数据中RNA编辑事件的识别算法和系统分析[D];苏州大学;2015年
7 陈瑞东;长链非编码RNA MEG3在胰腺癌发生发展中作用的实验研究[D];苏州大学;2015年
8 刘骏武;线虫和水稻中环状RNA的预测及分析[D];华中农业大学;2015年
9 李猷;利用RNA干扰技术提高番茄抗TMV侵染能力的研究[D];牡丹江师范学院;2015年
10 吴术盛;SVCV感染EPC细胞microRNA表达谱的初步研究[D];华中农业大学;2015年
,本文编号:2508656
本文链接:https://www.wllwen.com/yixuelunwen/zlx/2508656.html