优化的Apriori算法应用于中风病的处方配伍规律研究
[Abstract]:Aim: to optimize the accuracy of mining results by introducing new parameters Kulc and IR on the basis of the traditional support and confidence model of association rules, and to compare and analyze the mining results before and after optimization. The results can be applied to the clinical teaching of modern Chinese medicine, the theoretical research and the application platform of TCM combined with big data and Internet. Methods: the SQL Server database was established for the information of stroke medical records, which is a hot research topic in the field of traditional Chinese medicine, and its prescription compatibility law was excavated and analyzed by using Apriori algorithm, and the program was compiled with Microsoft Visual Studio 2010. In order to avoid the appearance of pseudo-strong rule, the correlation measure parameter Kulc and the unbalanced ratio (IR) parameter are introduced to ensure that the rules with real strong correlation can be excavated. Combined with TCM theory, the optimized mining results are analyzed in TCM, and the compatibility law is determined. Results: by using Apriori algorithm and new parameters Kulc and IR, the compatibility of stroke prescription before and after optimization was obtained, and by comparing the mining results before and after optimization, it was found that the optimized combination could filter out many drug combinations with no strong correlation. The results of traditional Chinese medicine analysis show that the medicine is better in the treatment of apoplexy, which provides data support and theoretical basis for modern Chinese medicine treatment of apoplexy. Conclusion: by introducing the parameters of Kulc and IR, the compatibility rules of non-strong association can be filtered, the accuracy of association rules mining can be improved, and the compatibility law of modern TCM treatment of apoplexy can be obtained. The new method can also be applied to excavate the rule of diagnosis and treatment of other diseases, especially the disease which has not completely defined the law of drug use, which can provide theoretical support and teaching guidance for the study of TCM theory and clinical practice.
【学位授予单位】:山东中医药大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.13;R255.2
【参考文献】
相关期刊论文 前10条
1 王凯;牛淑平;;近年来中风病中医药研究进展[J];中医药临床杂志;2014年12期
2 蔡莉;;基于名老中医Ⅱ型糖尿病医案的数据挖掘研究[J];佳木斯教育学院学报;2013年11期
3 汪伟;邹璇;詹雪;;论数据挖掘中的数据预处理技术[J];煤炭技术;2013年05期
4 张国民;;遗传算法的综述[J];科技视界;2013年09期
5 洪芳;何建成;曹雪滨;;人工神经网络在中医证候研究中的应用现状与趋势[J];辽宁中医杂志;2013年01期
6 李健;卢朋;张瑞贤;信富荣;陈建新;唐仕欢;杨洪军;;《中医方剂大辞典》中治疗肺痿方剂的用药规律分析[J];中国实验方剂学杂志;2012年10期
7 涂泳秋;陈国华;朴胜华;郭姣;;中医药科研中用到的数据挖掘方法综述[J];医学信息(上旬刊);2011年07期
8 李赛;聂莉芳;孙红颖;;聂莉芳治疗慢性肾功能衰竭经验的关联规则分析[J];中华中医药杂志;2011年07期
9 陈芳;朱敏;尚尔鑫;唐于平;陶静;段金廒;;基于Apriori算法的四物汤类方组方特点分析[J];中华中医药杂志;2011年02期
10 李金广;;数据挖掘中聚类算法研究综述[J];中国科技信息;2010年17期
相关博士学位论文 前1条
1 陈少婷(Chan Siu Ting);中医中风渊源刍议[D];广州中医药大学;2014年
相关硕士学位论文 前4条
1 张凯;数据挖掘技术在医疗费用数据中的应用研究[D];北京邮电大学;2015年
2 冯正西;关联规则的改进与应用研究[D];华中师范大学;2013年
3 方洪鹰;数据挖掘中数据预处理的方法研究[D];西南大学;2009年
4 马丽伟;关联规则算法研究及其在中医药数据挖掘中的应用[D];南京理工大学;2009年
,本文编号:2235638
本文链接:https://www.wllwen.com/zhongyixuelunwen/2235638.html