当前位置:主页 > 法律论文 > 治安法论文 >

基于AHP-Apriori改进算法在“两抢”犯罪因素分析中的研究

发布时间:2018-10-19 14:03
【摘要】:随着公安部门信息化建设的不断发展和多年的工作实践,公安信息中心积累了大量的犯罪数据。然而,目前公安部门在对已经存在的犯罪数据使用方面,很多时候只停留在传统的简单查询、统计等功能上。和传统数据分析的技术相比较,数据挖掘技术可以从已有的犯罪数据中提取隐藏的规律和趋势。因此,如何利用数据挖掘技术实现对犯罪各类影响因素进行分析,是目前公安系统迫切需要研究的一个课题。“两抢”犯罪是对社会治安影响较大的多发性案件,它随时危害了公民的生命财产安全,所以减少案件的频发是公安机关的一项重要任务。犯罪的产生受由各种因素共同支配,也是各影响因素相互作用的综合结果。如果能够发现蕴含在犯罪数据中的规律,提前做好治安防控的预防措施,就能降低犯罪率。本文尝试将AHP和Apriori关联规则算法结合应用到犯罪影响因素的分析,试图从中获得一些犯罪发生的原因,为犯罪的预防和教育提供有价值的信息,因此在治安防控上具有研究的价值和现实意义。本文首先提出“两抢”犯罪影响的四大因素:个人因素、社会因素、时间因素和空间因素,并且分析出四大因素对犯罪的影响。然后详细阐述了AHP和Apriori关联规则算法的思想和实现过程。最后针对Apriori算法不能进行多层次关联性分析的不足和无法判断事务性重要度的缺陷,结合AHP层次分析法进行多层次分析并进行加权,得到犯罪影响因素的权值和关联规则。并从结果分析出“两抢”犯罪影响因素的一些规律和特点,为治安防控提供新的方向。
[Abstract]:With the continuous development of the information construction of public security department and the practice of many years, the public security information center has accumulated a large amount of crime data. However, at present, the public security departments in the use of existing crime data, many times only stay in the traditional simple query, statistics and other functions. Compared with traditional data analysis techniques, data mining technology can extract hidden laws and trends from existing crime data. Therefore, how to use data mining technology to analyze all kinds of factors affecting crime is an urgent need to be studied in public security system. The crime of "two robberies" is a multiple case which has a great influence on public security. It endangers the life and property of citizens at any time, so reducing the frequent occurrence of cases is an important task of the public security organs. The emergence of crime is controlled by various factors, and it is also the comprehensive result of the interaction of various factors. If we can find the law contained in the crime data and take preventive measures in advance, we can reduce the crime rate. This paper attempts to apply AHP and Apriori association rules algorithm to the analysis of the influencing factors of crime, and try to obtain some causes of crime and provide valuable information for crime prevention and education. Therefore, in the public security prevention and control has the value of research and practical significance. This paper first puts forward four factors that influence the crime of "two robberies": personal factor, social factor, time factor and space factor, and analyzes the influence of four factors on crime. Then, the idea and implementation process of AHP and Apriori association rule algorithm are described in detail. Finally, aiming at the deficiency of Apriori algorithm which can not carry out multi-level correlation analysis and cannot judge the transactional importance, combining with AHP analytic hierarchy process to carry out multi-level analysis and weighting, the weights and association rules of the influencing factors of crime are obtained. Some laws and characteristics of the influencing factors of "two robberies" crime are analyzed from the result, which provides a new direction for the prevention and control of public security.
【学位授予单位】:江西师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;D917.9

【参考文献】

相关期刊论文 前10条

1 叶文菁;吴升;;基于加权时空关联规则的公交扒窃犯罪模式识别[J];地球信息科学学报;2014年04期

2 李晓飞;;云计算环境下Apriori算法的MapReduce并行化[J];长春工业大学学报(自然科学版);2013年06期

3 王丽华;;“两抢一盗”犯罪问题研究——基于社会治理视角的分析[J];人民论坛;2012年27期

4 饶正婵;范年柏;;关联规则挖掘Apriori算法研究综述[J];计算机时代;2012年09期

5 唐德权;张悦;贺永恒;肖自红;;基于图数据挖掘算法的犯罪规律研究及应用[J];计算机技术与发展;2011年11期

6 包晔;;关联分析技术在刑事犯罪分析中的应用[J];数学的实践与认识;2011年20期

7 刘玉顺;;天津侵财犯罪高发原因和对策[J];中国刑事警察;2008年04期

8 刘君强,王勋,孙晓莹;多维多层关联规则有效挖掘的新算法[J];南京大学学报(自然科学版);2003年02期

9 段云峰,宋俊德,李剑威,舒华英;基于数量的关联规则挖掘[J];北京邮电大学学报;2002年04期

10 王孝宁 ,何苗,何钦成;层次分析法判断矩阵的构成方法及比较[J];中国卫生统计;2002年02期

相关硕士学位论文 前10条

1 董金凤;数据挖掘中关联规则算法的改进与并行化处理[D];哈尔滨理工大学;2016年

2 邵晓康;Apriori算法研究及在本科招生数据挖掘中应用[D];北京交通大学;2016年

3 马东东;基于AWS云平台GPU集群加速的Apriori算法的研究和应用[D];大连理工大学;2015年

4 赵宏利;改进的Apriori算法在大学生心理分析中的研究[D];华中师范大学;2015年

5 黄钧晟;云计算环境下基于Apriori算法的气象数据关联规则分析研究[D];南京信息工程大学;2015年

6 王达明;基于云计算与医疗大数据的Apriori算法的优化研究[D];北京邮电大学;2015年

7 梁紫藤;基于层次分析法的在线购物网站用户行为分析[D];北京工业大学;2014年

8 邹军;城区多发性侵财犯罪研究[D];中南大学;2013年

9 周帅;基于数据挖掘技术的犯罪相关因素分析[D];大连海事大学;2012年

10 刘博;基于数据挖掘技术的犯罪因素关联性分析[D];大连海事大学;2011年



本文编号:2281355

资料下载
论文发表

本文链接:https://www.wllwen.com/falvlunwen/fanzuizhian/2281355.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户36a57***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com