基于神经网络模型的电力上市公司价值评估研究
[Abstract]:In recent years, the international community has carried out a lot of research on enterprise value evaluation, and actively promoted the development of asset evaluation. The electric power industry of our country has not only the characteristics of state-owned enterprises, but also the special technical and economic characteristics of the industry. With the deepening reform of social economy, electric power enterprises must change their management concept and development mode if they want to achieve long-term development. In order to meet the challenges and opportunities brought by the reform of electric power system and the downward economic situation, it is necessary for electric power enterprises to explore the driving factors of enterprise value, enhance the ability of value creation, and obtain more surplus value. Therefore, it is of great theoretical and practical significance to explore a method which is suitable for enterprise operation and can evaluate the value of enterprise objectively and accurately. Through literature review and data collection, this paper provides theoretical support for understanding the current research situation of power industry and enterprise value assessment model. This paper is divided into five parts. The first part is the background and significance of the research, as well as the domestic and foreign research on the evaluation of enterprise value and the application of neural network model. On this basis, the second part introduces the theory of enterprise value and valuation. The first task of value evaluation is to define the types of enterprise value, and through the brief description of each form of value, we can get the enterprise value performance studied in this paper. Secondly, it introduces the methods and theoretical models of enterprise value evaluation, and then explores the enterprise value evaluation model adopted in this paper. The third part is the analysis of the driving factors of power enterprise value based on SWOT and the construction of index system. The value driving factors of electric power enterprises are analyzed by SWOT, and the value evaluation index system suitable for electric power enterprises is established. The fourth part is the power enterprise value evaluation model construction and empirical analysis, the neural network model based on the construction of a detailed description of the evaluation of enterprise value and empirical analysis. The fifth part is the research results and conclusions, as well as the shortcomings of this study, hope to be improved in the future. This article mainly carries on the innovation research from two aspects. First, the paper uses SWOT analysis method to analyze the driving factors of enterprise value, and constructs the index system of power enterprise value evaluation, considering the factors such as cash flow, capital cost, etc. Secondly, the paper innovatively combines neural network and EVA. The establishment of enterprise value evaluation model provides a new idea for forecasting method in enterprise value evaluation model.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F406.7;F426.61
【参考文献】
相关期刊论文 前10条
1 李振平;桂预风;;基于灰关联神经网络和马尔可夫模型的股票价格预测[J];内蒙古师范大学学报(自然科学汉文版);2016年03期
2 孙海波;王丽敏;韩旭明;;引入趋势因子的BP模型在股市预测中应用[J];统计与决策;2015年19期
3 李翔;欧阳森;黄瑞艺;蒋金良;;基于SWOT方法分析我国电力需求侧管理发展[J];广西电力;2015年04期
4 王伟晶;;基于BP神经网络预测股票的涨跌趋势[J];现代经济信息;2015年16期
5 李秉坤;钱欣;;企业价值评估收益法应用问题及其完善[J];哈尔滨商业大学学报(社会科学版);2014年03期
6 陈嶷瑛;张泽星;李文斌;;基于神经网络的股票价格预测模型[J];计算机应用与软件;2014年05期
7 王含春;秦曦;郑凯;;我国电力上市公司股权融资成本的测算与分析—基于三阶段剩余收益贴现模型[J];管理现代化;2014年01期
8 刘玉平;池睿;;企业价值评估收益法中营运资金预测的改进[J];会计之友;2014年01期
9 刘家和;金秀;陈露艳;苑莹;;基于IDNPSO-BP神经网络的股票市场指数预测[J];东北大学学报(自然科学版);2013年06期
10 刘任重;;基于企业价值评估的DCF与RIV定价模型的比较[J];统计与决策;2013年02期
相关博士学位论文 前1条
1 徐向;中国电力上市企业法人治理结构研究[D];东北财经大学;2015年
相关硕士学位论文 前10条
1 赵安琦;基于EVA的企业价值评估研究[D];吉林财经大学;2016年
2 胡照跃;人工神经网络在股票预测中的应用[D];中北大学;2016年
3 赵红梅;企业价值评估方法的选择及影响因素研究[D];山东大学;2015年
4 付静丽;基于DCF的火力发电企业价值评估研究[D];辽宁大学;2015年
5 郭智慧;我国电力行业上市公司资本结构优化研究[D];天津财经大学;2015年
6 张懿巍;引入EVA的发电类上市公司财务预警研究[D];华北电力大学;2015年
7 孙明杨;基于剩余收益模型的皖能电力企业价值评估研究[D];湖南大学;2014年
8 张希影;基于遗传算法优化的BP神经网络股票价格预测[D];青岛科技大学;2014年
9 张明;基于改进动态神经网络的股票预测模型的研究[D];内蒙古大学;2014年
10 杨婷;企业价值评估指标体系研究[D];长安大学;2014年
,本文编号:2163303
本文链接:https://www.wllwen.com/guanlilunwen/caiwuguanlilunwen/2163303.html