太阳能热水和热泵复合热源的毛细管辐射供暖应用研究
本文选题:太阳能 + 复合热源 ; 参考:《东南大学》2016年硕士论文
【摘要】:针对建筑节能、低碳环保的迫切需求,本文研究了一种采用太阳能和空气源热泵(热泵)作为热源的毛细管辐射供暖系统。相比其他供暖系统,该系统不但能提高人体舒适性,还具有节能环保的特点。本文的研究工作包括下面几个方面:对南京地区建筑面积为354.50m2的某三层别墅进行建模,采用典型气象年逐时气象参数进行热环境动态模拟;对该建筑的6个空间设计了毛细管辐射式供暖系统(铺设面积为250m2),热源侧考虑采用太阳能热水+热泵的复合能源系统与单一热源供暖系统两种情况;对平板型集热器、蓄热水箱、热泵分别进行建模。应用TRNSYS软件模拟研究最佳的蓄热水箱体积与集热面积的比值(VAR);采用最佳比值模拟研究有效集热量和集热效率的变化,分析每周、每月及全年太阳能保证率和热泵逐时能耗情况;将复合热源供暖系统与单一热源供暖系统能耗模拟比较分析,计算复合热源初投资回收期限;对单一热源热泵供暖进行实验测试和分析研究;运用费用年值算法分析复合系统经济性和节能性。本文研究的成果包括以下几个方面:1)创新提出了研究优化太阳能集热系统的重要参数(VAR),创新提出VAR的三步优化法:a)费用年值法优化;b)有效集热量和集热效率优化;c)太阳能保证率优化。采用三步优化法模拟得到复合系统的最佳VAR区间为[0.049,0.065],即1m2集热面积的优化配置水箱容积为50L-60L。2)根据建筑能耗模拟和太阳辐射模拟分析,得到太阳能集热面积为48.52m2,确定VAR=0.057,蓄热水箱体积为2.75m3。采用上述配置,太阳能热水系统典型日有效集热量为525.49MJ,其余热负荷281.60MJ由热泵承担,太阳能占建筑总负荷的65.11%。全年供暖期太阳能有效集热量为33773.72MJ,配套热泵供热量为20189.71MJ,太阳能集热系统与热泵系统热量比为8:5。3)将复合热源与单一热源全年供暖能耗模拟比较,复合热源模式下热泵能耗为3209.25kWh,单一热源模式下能耗5753.18kWh,复合热源节能2543.93kWh。复合热源的初投资高出单一热源25285元,利用节能回报,可以在不到8年时间里回收投资。4)考虑生命周期15年,将复合热源与传统热源比较,采用费用年值法将复合热源与燃气锅炉、燃油锅炉、电辅助太阳能供暖系统比较得知,复合热源初投资为78185元,年运行费用为1765元,费用年值最低,为10912元/年。复合热源每年能节省标准煤为2.30吨、节省碳排放量为1.63吨。本文有3个创新点,提出VAR作为太阳能集热系统优化研究参数;建立VAR的三步优化研究法;建筑能耗和热泵耦合的逐时能耗模拟。本文的研究成果对研发高效、节能、环保的辐射暖通系统具有很好的参考价值。
[Abstract]:Aiming at the urgent need of building energy saving and low carbon environmental protection, a capillary radiation heating system using solar energy and air source heat pump (heat pump) as heat source is studied in this paper.Compared with other heating systems, this system not only improves human comfort, but also has the characteristics of energy saving and environmental protection.The research work of this paper includes the following aspects: modeling of a three-story villa with 354.50m2 building area in Nanjing area and dynamic simulation of thermal environment with typical meteorological annual hourly meteorological parameters;The capillary radiation heating system (laid area is 250m ~ 2) is designed for six spaces of this building. The heat source side considers the use of solar hot water heat pump as a composite energy system and a single heat source heating system.The heat storage tank and heat pump are modeled separately.The best ratio of storage tank volume to heat collecting area is studied by TRNSYS software, the change of effective heat collection and heat collection efficiency is studied by the best ratio simulation, and the energy consumption of heat pump is analyzed every week, every month and every year.The energy consumption of compound heat source heating system is compared with that of single heat source heating system, the initial investment recovery period of compound heat source is calculated, and the heat supply of single heat source heat pump is tested and analyzed.The cost annual algorithm is used to analyze the economy and energy efficiency of the composite system.The research results of this paper include the following aspects: 1) innovating the important parameter of studying and optimizing solar energy collector system, innovating VAR's three-step optimization method: a) cost annual value method to optimize the effective heat collection and heat collection efficiency optimization.Optimization of solar energy guarantee rate.Using three-step optimization method, the optimum VAR interval of the composite system is [0.049 / 0. 065], that is, the optimal allocation tank volume of the 1m2 heat collecting area is 50L-60L. 2) according to the simulation of building energy consumption and solar radiation simulation,The solar energy collecting area is 48.52 m2, the VARN is 0.057 and the volume of the storage tank is 2.75 m ~ 3.With the above configuration, the typical daily effective heat collection of the solar water heating system is 525.49 MJ, the rest of the heat load 281.60MJ is borne by the heat pump, and the solar energy accounts for 65.11% of the total building load.The effective heat collection of solar energy is 33773.72MJ, the heat supply of matching heat pump is 20189.71MJ, and the heat ratio of solar energy collection system to heat pump system is 8: 5.3. the energy consumption of composite heat source and single heat source is simulated and compared with that of single heat source.The energy consumption of heat pump is 3209.25kWhin the compound heat source mode, 5753.18kWhin the single heat source mode, and 2543.93kWh.The initial investment of the composite heat source is 25285 yuan higher than that of the single heat source. With the energy saving return, the investment can be recovered in less than 8 years. (4) considering the life cycle of 15 years, the composite heat source is compared with the traditional heat source.The cost annual value method is used to compare the compound heat source with gas boiler, oil-fired boiler and electrically assisted solar heating system. It is found that the initial investment of the compound heat source is 78185 yuan, the annual operating cost is 1765 yuan, and the annual cost is the lowest, 10912 yuan per year.The composite heat source can save 2.30 tons of standard coal and 1.63 tons of carbon emissions per year.In this paper, there are three innovations, VAR as the parameter of solar energy collector system optimization, a three-step optimization research method for VAR, and a time-by-hour energy consumption simulation for building energy consumption and heat pump coupling.The research results of this paper have good reference value for the research and development of high-efficiency, energy-saving and environmental-friendly radiative HVAC system.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TU822;TU832
【参考文献】
相关期刊论文 前10条
1 张斌;;基于毛细管型辐射供暖与供冷系统影响因素的研究[J];能源研究与管理;2013年04期
2 王智平;陈丹丹;王克振;赵静;;太阳能储热水箱温度分层的研究现状及发展趋势[J];材料导报;2013年15期
3 闫云飞;张智恩;张力;代长林;;太阳能利用技术及其应用[J];太阳能学报;2012年S1期
4 鲁红光;;太阳能供热采暖应用技术[J];硅谷;2011年20期
5 李双双;端木琳;舒海文;叶晓莉;;基于分层室温控制的太阳能热水低温地板辐射供暖系统模拟研究[J];建筑科学;2011年08期
6 高志宏;刘晓华;江亿;;毛细管辐射供冷性能实验研究[J];太阳能学报;2011年01期
7 姚万祥;张志刚;赵树兴;杜雪娜;张建;;毛细管辐射空调系统运行的经济性分析[J];煤气与热力;2010年04期
8 何茜;;GB 50495-2009《太阳能供热采暖工程技术规范》解读[J];中国标准化;2010年04期
9 刘学来;薛红香;李永安;李继志;;毛细管平面辐射空调房间室内计算温度研究[J];煤气与热力;2010年03期
10 杨磊;张小松;;复合热源太阳能热泵热水系统性能模拟[J];化工学报;2009年09期
相关博士学位论文 前1条
1 刘寅;太阳能—空气复合热源热泵系统性能研究[D];西安建筑科技大学;2010年
相关硕士学位论文 前10条
1 郑丽梅;毛细管平面辐射空调应用技术研究[D];燕山大学;2014年
2 印伟伟;地源热泵—地板辐射空调系统运行控制研究[D];重庆大学;2014年
3 尹丽媛;基于TRNSYS的太阳能耦合土壤源热泵系统仿真研究[D];太原理工大学;2013年
4 高腾;平板太阳能集热器的传热分析及设计优化[D];天津大学;2012年
5 刘雨曦;空气源热泵辅助太阳能热水系统在夏热冬冷地区的运行模拟和应用研究[D];重庆大学;2011年
6 刘鹏;辅热太阳能低温热水地板辐射采暖系统研究[D];河南农业大学;2011年
7 李志恒;小型空气源热泵辅助太阳能热水装置性能模拟研究[D];西安建筑科技大学;2010年
8 安丽;太阳能供暖系统的模拟研究[D];中国海洋大学;2010年
9 崔新阳;毛细管平面空调系统的热工特性及水力计算方法的研究[D];山东建筑大学;2010年
10 张洪敏;高效平板太阳能集热器盖板的热工性能实验研究[D];哈尔滨工业大学;2006年
,本文编号:1734123
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/1734123.html