基于太阳能的相变储能新风高效换热系统研究
本文选题:太阳能新风系统 + 热管 ; 参考:《沈阳建筑大学》2014年硕士论文
【摘要】:严寒地区冬季室外温度极低,为了保持室内采暖温度,人们一直在提高建筑的密封性,因此室内通风换气受到严格限制,如果不依靠开窗通风,室内空气品质会越来越差。本文对沈阳15个小区进行调研的统计结果显示,人们希望冬季室内每天都能保持通风换气,改善屋内的空气品质。目前,太阳能新风技术与相变储能技术的联合应用在建筑节能和暖通空调领域已经成为一个热点问题,太阳能新风和相变储能热集成技术不仅可以降低建筑能耗还能够改善室内热环境,提高热舒适性。本文在相变材料与热管技术的集成应用基础上,设计了太阳能相变储能新风高效换热系统,并进行了分析和研究。在日照充足条件下,新风被太阳能集热器加热后直接送入室内,此时系统以太阳能作为主要热源将剩余热量通过热管等温传入相变蓄热器;当太阳辐射量不足,新风高效换热器送风口处空气温度达不到标准送风温度时,将主要热源由太阳能转换为相变储能蓄热器继续加热新风。在系统设计中,热管作为改善相变材料导热性能的介质,提高空气与蓄热器的换热效率。热管的引入解决了太阳能集热板的热量浪费问题,改善了相变材料导热性能、换热效率等缺点。对热管进行了特殊定制,并进行了分析和测试,结果表明定制的热管性能良好,满足试验要求。对相变材料进行遴选,选取了癸酸为本试验的相变蓄热材料。分析了基于太阳能的相变储能新风高效换热系统各部分间的换热情况,用网格划分软件对系统各部分进行了三维网格划分,利用模拟软件对太阳能空气集热器的换热过程、相变储能蓄热器的蓄热过程和新风高效换热器内部的放热过程(包括相变储能蓄热器的放热过程)进行了模拟分析,通过热量及相态变化总结换热规律。搭建了基于太阳能的相变储能新风高效换热系统并集成于住宅房间,采集了太阳能集热板不同高度处的温度数据,验证了热管的单向有效性并能够提高系统整体热利用效率;采集了蓄热器内不同高度处的温度数据,结果表明了热管的高效性能够缩短相变蓄热材料的蓄热时间;采集了换热器内不同位置处温度数据,验证了热管技术的引入成功的改善了系统的换热效率,延长了系统的通风换气时间。将模拟换热过程与试验换热过程进行了对比,研究结果显示热管技术的引入能够提高系统换热效率,延长室内的通风换气时间。相对普通新风系统而言,本课题所研究的基于太阳能的相变储能新风高效换热系统在节能效果和舒适度方面有明显优势,对能源的可持续发展具有重要意义。
[Abstract]:The outdoor temperature is very low in cold winter. In order to keep the indoor heating temperature, people have been improving the sealing of the building, so the indoor ventilation is strictly restricted. If we do not rely on window ventilation, the indoor air quality will become worse and worse. In this paper, the statistical results of 15 residential areas in Shenyang show that people hope that the indoor ventilation and ventilation can be maintained every day in winter to improve the air quality in the house. At present, the joint application of solar fresh air technology and phase change energy storage technology in the field of building energy conservation and HVAC has become a hot issue. Solar fresh air and phase change energy storage technology can not only reduce building energy consumption, but also improve indoor thermal environment and thermal comfort. Based on the integrated application of phase change material and heat pipe technology, an efficient heat transfer system of phase change fresh air for solar energy storage has been designed and analyzed in this paper. Under sufficient sunshine, the fresh air is heated by a solar collector and directly sent indoors. At this time, the system uses solar energy as the main source of heat to transmit the remaining heat through the heat pipe isothermal to the phase change accumulator; when the solar radiation is insufficient, When the air temperature at the outlet of the high-efficiency fresh air heat exchanger does not reach the standard air temperature, the main heat source is converted from solar energy to phase change energy storage accumulator to heat the fresh air. In the system design, the heat pipe is used as the medium to improve the thermal conductivity of phase change material, and the heat transfer efficiency of air and accumulator is improved. The introduction of heat pipe solves the problem of heat waste of solar collector and improves the thermal conductivity and heat transfer efficiency of phase change materials. The heat pipe has been specially customized and analyzed and tested. The results show that the customized heat pipe has good performance and meets the test requirements. The phase change material was selected and sebacic acid was selected as the phase change heat storage material. The heat transfer between various parts of phase change fresh air heat transfer system based on solar energy is analyzed. The three dimensional grid division software is used to divide each part of the system, and the heat transfer process of solar air collector is simulated by means of simulation software. The heat storage process of the phase change energy accumulator and the exothermic process inside the high-efficiency fresh air heat exchanger (including the heat release process of the phase change energy storage accumulator) are simulated and analyzed. The heat transfer law is summed up by the change of heat and phase state. The high efficiency heat transfer system of phase change energy storage based on solar energy is built and integrated into the residential room. The temperature data of solar collector at different heights are collected. The unidirectional efficiency of heat pipe is verified and the overall thermal utilization efficiency of the system is improved. The temperature data at different heights in the accumulator are collected. The results show that the high efficiency of the heat pipe can shorten the storage time of the phase change heat storage material, and the temperature data at different positions in the heat exchanger are collected. It is verified that the introduction of heat pipe technology can improve the heat transfer efficiency of the system and prolong the ventilation and air exchange time of the system. The simulated heat transfer process is compared with the experimental heat transfer process. The results show that the introduction of heat pipe technology can improve the heat transfer efficiency of the system and prolong the ventilation and air exchange time in the room. Compared with ordinary fresh air system, the phase change fresh air heat transfer system based on solar energy has obvious advantages in energy saving and comfort, which is of great significance to the sustainable development of energy.
【学位授予单位】:沈阳建筑大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU83;TK519
【相似文献】
相关期刊论文 前10条
1 张东,周剑敏,吴科如;相变储能复合材料的研究和应用[J];节能与环保;2004年01期
2 王永川,陈光明,张海峰,洪峰;相变储能材料及其实际应用[J];热力发电;2004年11期
3 郭茶秀;张务军;魏新利;;新型相变储能设备的强化传热研究[J];冶金能源;2008年01期
4 王彦敏;;相变储能技术在采暖空调领域的应用研究[J];科技资讯;2009年30期
5 王海鸥;褚晓东;姚有为;唐国翌;翁端;;相变储能微囊的制备及性能研究[J];太阳能学报;2010年02期
6 李启金;姜葱葱;李国忠;;石膏基相变储能材料的性能研究[J];墙材革新与建筑节能;2011年11期
7 张建军;;探讨相变储能建筑材料的应用技术进展[J];门窗;2012年08期
8 李书进;蒋晓曙;刘燕;厉见芬;;多孔相变储能颗粒的制备及蓄热性能研究[J];新型建筑材料;2012年10期
9 张永信;李舒宏;操恺;李献亮;顾维维;;太阳能相变储能水箱释能性能的数值模拟[J];储能科学与技术;2013年04期
10 史巍;艾斌;侯景鹏;;复合相变储能砂浆性能实验研究[J];硅酸盐通报;2014年05期
相关会议论文 前10条
1 黄凯良;冯国会;刘馨;;相变储能房间节能技术研究应用进展及拓展潜力[A];全国暖通空调制冷2010年学术年会资料集[C];2010年
2 赵杰;唐炳涛;张淑芬;杨振宇;贾超;;相变储能材料在工业余热回收中的应用[A];中国化工学会2009年年会暨第三届全国石油和化工行业节能节水减排技术论坛会议论文集(上)[C];2009年
3 高U,
本文编号:2093630
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2093630.html